Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-cleaving viroid and newt RNAs may only be active as dimers

Abstract

Avocado sunblotch viroid (ASBV) is a 247-nucleotide, single-stranded, circular RNA1. It is considered to replicate via a rolling-circle mechanism2–4 in which circular, monomeric plus and minus RNAs act as templates for the synthesis of longer-than-unit-length precursor RNAs. Processing of these RNAs in vivo may occur by a self-cleavage reaction, as indicated by ability of dimeric, linear plus and minus ASBV RNAs to specifically self-cleave in vitro with the excision of a monomeric RNA with 5′-hydroxyl and 2′,3′-cyclic phosphodiester termini4. A similar self-cleavage reaction has also been reported to occur in an RNA transcript containing a dimeric copy of a tandemly repeated, 330-base-pair sequence of the newt genome5. Based on comparisons with self-cleaving plant viral satellite RNAs6,7, hammerhead-shaped active structures, each containing one self-cleavage site, were proposed for the plus and minus ASBV RNAs4 and the newt RNA5, but the stability of these hammerheads has been questioned4,8. Here, more stable active structures that contain two self-cleavage sites are proposed and data supporting these models are presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Symons, R. H. Nucleic Acids Res. 9, 6527–6537 (1981).

    Article  CAS  Google Scholar 

  2. Branch, A. D. & Robertson, H. D. Science 223, 450–455 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Hutchins, C. J. et al. Pl. molec. Biol. 4, 293–304 (1985).

    Article  CAS  Google Scholar 

  4. Hutchins, C. J., Rathjen, P. D., Forster, A. C. & Symons, R. H. Nucleic Acids Res. 14, 3627–3640 (1986).

    Article  CAS  Google Scholar 

  5. Epstein, L. M. & Gall, J. G. Cell 48, 535–543 (1987).

    Article  CAS  Google Scholar 

  6. Forster, A. C. & Symons, R. H. Cell 49, 211–220 (1987).

    Article  CAS  Google Scholar 

  7. Prody, G. A., Bakos, J. T. Buzayan, J. M., Schneider, I. R. & Bruening, G. Science 231, 1577–1580 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Forster, A. C. & Symons, R. H. Cell 50, 9–16 (1987).

    Article  CAS  Google Scholar 

  9. Forster, A. C., Jeffries, A. C., Sheldon, C. C. & Symons, R. H. Cold Spring Harb. Symp. quant. Biol. (in the press).

  10. Koizumi, M., Iwai, S. & Ohtsuka, E. FEBS Lett. 228, 228–230 (1988).

    Article  CAS  Google Scholar 

  11. Uhlenbeck, O. C. Nature 328, 596–600 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Tinoco, I., Uhlenbeck, O. C. & Levine, M. D. Nature 230, 362–367 (1971).

    Article  ADS  CAS  Google Scholar 

  13. Freier, S. M. et al. Proc. natn Acad. Sci. U.S.A. 83, 9373–9377 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Milligan, J. F., Groebe, D. R., Witherell, G. W. & Uhlenbeck, O. C. Nucleic Acids Res. 15, 8783–8798 (1987).

    Article  CAS  Google Scholar 

  15. Haseloff, J. & Symons, R. H. Nucleic Acids Res. 9, 2741–2752 (1981).

    Article  CAS  Google Scholar 

  16. Zoller, M. J. & Smith, M. Meth. Enzym. 100, 468–500 (1983).

    Article  CAS  Google Scholar 

  17. Barker, J. M., Mclnnes, J. L., Murphy, P. J. & Symons, R. H. J. virol. Meth. 10, 87–98 (1985).

    Article  CAS  Google Scholar 

  18. Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H. & Roe, B. A. J. molec. Biol. 143, 161–178 (1980).

    Article  CAS  Google Scholar 

  19. Melton, D. A. et al. Nucleic Acids Res. 12, 7035–7055 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forster, A., Davies, C., Sheldon, C. et al. Self-cleaving viroid and newt RNAs may only be active as dimers. Nature 334, 265–267 (1988). https://doi.org/10.1038/334265a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334265a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing