Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Has comet Halley retained its primordial angular momentum?

Abstract

In 1967, Hartmann & Larson1 and Fish2 pointed out a relationship between the 'angular momentum density' (angular momentum per unit mass) and mass of the planets and asteroids, which was interpreted as resulting from the primordial accretion of these objects. These authors noted that this relationship holds if the planets rotate with approximately the same period, without taking into account density variations, and Alfvén3 has provided a possible mechanism for this occurrence. Here I show that the nuclei of several comets, including Halley, obey the same relationship, suggesting that these objects too retain their primordial angular momentum. The angular momentum versus mass relation depends on the nuclear dimensions, dynamical characteristics and density; if primordial accretion is assumed, knowing two of these parameters allows the determination of the third. Applying this method to comet Halley yields a bulk density of 0.30+0.22−0.13g cm−3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fish, F. F. Icarus 7, 251–256 (1967).

    Article  ADS  Google Scholar 

  2. Hartmann, W. K. & Larson, S. M. Icarus 7, 257–260 (1967).

    Article  ADS  Google Scholar 

  3. Alfven, H. Icarus 3, 57–62 (1964).

    Article  ADS  Google Scholar 

  4. MacDonald, G. J. F. Space Sci. Rev. 2, 467–541 (1963).

    Article  ADS  Google Scholar 

  5. Sagdeev, R. Z. et al. Nature 321, 259–262 (1986).

    Article  ADS  Google Scholar 

  6. Keller, H. U. et al. Nature 321, 320–326 (1986).

    Article  ADS  Google Scholar 

  7. Bertaux, J. & Abergel, A. Eur. Space Ag. Spec. Publ. 250, Vol. II, 341–345 (1986).

    Google Scholar 

  8. Greenberg, J. M. & Grim, R. Eur. Space Ag. Spec. Publ. 250, Vol. II, 255–263 (1986).

    Google Scholar 

  9. Rickman, H. Uppsala Preprint No. 8, Astron. Observatory, Uppsala, Sweden (1986).

  10. Krasnopolsky, V. et al. Nature, 321, 269–271 (1986).

    Article  ADS  Google Scholar 

  11. Sagdeev, R. et al. Eur. Space Ag. Spec. Publ. 250, Vol. II, 307–316 (1986); Nature 321, 266–268 (1986).

    Google Scholar 

  12. Reitsema, H. et al. Eur. Space Ag. Spec. Publ. 250, Vol. II, 351–354 (1986).

    Google Scholar 

  13. Wilhelm, K. et al. Eur. Space Ag. Spec. Publ. 250, Vol. 11, 367–369 (1986).

    Google Scholar 

  14. Millis, R. & Schleicher, D. Nature, 324, 646–649 (1986).

    Article  ADS  Google Scholar 

  15. Belton, M. J. S., Wehinger, P., Wyckop, S. & Spinrad, H. Eur. Space Ag. Spec. Publ. 250, Vol. I, 599–603 (1986).

    Google Scholar 

  16. Sekanina, Z. In Comet Halley 86: Worldwide Investigations, Results and Interpretations (Ellis Horwood Library of Space, London, 1988).

    Google Scholar 

  17. Sekanina, Z. Nature 325, 326–328 (1987).

    Article  ADS  Google Scholar 

  18. Whipple, F. in Comets (ed. Wilkening, L.) 227–250 (University of Arizona Press, Tucson, 1983).

    Google Scholar 

  19. Wallis, M. Phil. Trans. R. Soc. Lond. A313, 165–170 (1984).

    Article  ADS  Google Scholar 

  20. Sekanina, Z. Astron. J. 90, 1370–1381 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Sekanina, Z. Astron. J. 89, 1573–1586 (1984).

    Article  ADS  Google Scholar 

  22. Barker, E. S., Cochran, A. L. & Rybski, P. M. in Modern Observational Techniques For Comets (ed. Brand, J. C.) 81–86, 150–155 (JPL Publication, 1981).

    Google Scholar 

  23. Ferrin, I. & Guzman, E. Rev. Mexicana Astron. Astrof. 6, 339–345 (1981).

    ADS  CAS  Google Scholar 

  24. Ferrin, I. Internal Report, Univ. de los Andes, Dpto, de Física, Mérida, Venezuela, 1–251 (1988).

  25. Sekanina, Z. Astron. J. 91, 422–431 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrin, I. Has comet Halley retained its primordial angular momentum?. Nature 333, 834–835 (1988). https://doi.org/10.1038/333834a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333834a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing