Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Downward flux of particulate organic matter in the ocean: a particle decomposition paradox

Abstract

Oceanographers now recognize two distinct classes of particles in seawater, broadly categorized as suspended and sinking. The former class dominates the standing stock of particulate matter in the ocean and the latter class dominates the exchange between the surface waters and greater ocean depths1. The downward vertical flux of particulate organic matter (POM) in the open ocean exhibits a non-linear decrease with increasing water depth2–6, and greater than 75% of the net POM loss occurs in the upper 500 m of the water column6. Because sinking particles contain viable, metabolically active microorganisms7–12, the process of microbial decomposition is considered to be an important mechanism controlling POM flux. This model is consistent with the observed correspondence between POM flux and dissolved inorganic carbon concentrations13, and with the reported selective loss of biochemically labile compounds from sinking particles14–17. From our experiments, however, we conclude that the large sinking particles are, in general, poor habitats for bacterial growth and therefore unlikely sites for the active remineralization of organic matter. Our results require a shift in the emphasis of current ideas of particle decomposition from microbes attached to rapidly sinking particles to the microbial populations which are either free-living in the water column or attached to suspended (non-sinking) particulate matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McCave, I. N. Deep-Sea Res. 22, 491–502 (1975).

    Google Scholar 

  2. Knauer, G. A., Martin, J. H. & Bruland, K. W. Deep-Sea Res. 26, 97–108 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Suess, E. Nature 288, 260–263 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Betzer, P. R., Showers, W. J., Laws, E. A., Winn, C. D., Ditullio, G. R. & Kroopnick, P. M. Deep-Sea Res. 31, 1–11 (1984).

    Article  ADS  Google Scholar 

  5. Pace, M. L., Knauer, G. A., Karl, D. M. & Martin, J. H. Nature 325, 803–804 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. Deep-Sea Res. 34, 267–285 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Caron, D. A., Davis, P. G., Madin, L. P. & Sieburth, J. McN. Science 218, 795–797 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Ducklow, H. W., Kirchman, D. L. & Rowe, G. T. Appl. envir. Microbiol. 43, 769–776 (1982).

    CAS  Google Scholar 

  9. Ducklow, H. W., Hill, S. M. & Gardner, W. D. Continental Shelf Res. 4, 445–464 (1985).

    Article  ADS  Google Scholar 

  10. Silver, M. W., Gowing, M. M., Brownless, D. C. & Corliss, J. O. Nature 309, 246–248 (1984).

    Article  ADS  Google Scholar 

  11. Karl, D. M. & Knauer, G. A. Deep-Sea Res. 31, 221–243 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Taylor, G. T., Karl, D. M. & Pace, M. L. Mar. Ecol. Prog. Ser. 29, 141–155 (1986).

    Article  ADS  Google Scholar 

  13. Viecelli, J. A. J. geophys. Res. 89, 8194–8196 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Wakeham, S. G. et al. Nature 286, 798–800 (1980).

    Article  ADS  CAS  Google Scholar 

  15. De Baar, H. J. W., Farrington, J. W. & Wakeham, S. G. J. mar. Res. 41, 19–41 (1983).

    Article  CAS  Google Scholar 

  16. Wakeham, S. G., Lee, C., Farrington, J. W. & Gagosina, R. B. Deep-Sea Res. 31, 509–528 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Lee, C. & Cronin, C. J. mar. Res. 42, 1075–1097 (1984).

    Article  CAS  Google Scholar 

  18. Fellows, D. A., Karl, D. M. & Kanauer, G. A. Deep-Sea Res. 28, 921–936 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Karl, D. M. Microbiol. Rev. 44, 739–796 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Andrews, C. A., Karl, D. M., Small, L. F. & Fowler, S. W. Nature 307, 539–541 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Alldredge, A. L. & Youngbluth, M. J. Deep-Sea Res. 32, 1445–1456 (1985).

    Article  ADS  Google Scholar 

  22. Alldredge, A. L., Cole, J. J. & Caron, D. A. Limnol. Oceanogr. 31, 68–78 (1986).

    Article  ADS  Google Scholar 

  23. Yayanos, A., Dietz, A. S. & Van Boxtel, R. Science 205, 808–810 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Deming, J. W., Tabor, P. S. & Colwell, R. R. Microb. Ecol. 7, 85–94 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karl, D., Knauer, G. & Martin, J. Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature 332, 438–441 (1988). https://doi.org/10.1038/332438a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332438a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing