Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The barite-opal-organic carbon association in oceanic particulate matter

Abstract

Barite particles 0.5–5 μm in size are ubiquitous in the ocean and their formation, sinking and dissolution is a major part of the marine barium cycle1,2. Barite formation appears to be caused by biological activity in the upper water column, but the exact mechanism is unknown. Analysis of 1–53 μm and >53 μm sized particles obtained by large volume in situ filtration in the Atlantic suggests that barites are formed in the >53 fxm fraction in near-surface waters and released into the 1–53 μm fraction at depths below the euphotic zone. Scanning electron microscopy and energy dispersive X-ray fluorescence analysis of both size fractions shows first, that barites are formed almost exclusively in microenvironments containing decaying organic matter and the remains of siliceous plankton, and second that barites do not appear to be actively formed by the planktonic organism sampled. This explains the origin of suspended barite, and the similarity of dissolved Si and Ba distributions in the ocean. Suspended and sedimented barite may indicate the intensity of organic matter regeneration in the water column.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dehairs, F., Chesselet, R. & Jedwab, J. Earth planet. Sci. Lett. 49, 528–550 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Collier, R. W. & Edmond, J. M. Prog. Oceanogr. 13, 113–199 (1984).

    Article  ADS  Google Scholar 

  3. Chow, T. J. & Goldberg, E. D. Geochim. cosmochim. acta 20, 192–198 (1960).

    Article  ADS  Google Scholar 

  4. Wolgemuth, K. & Broecker, W. S. Earth planet. Sci. Lett. 8, 372–378 (1970).

    Article  ADS  CAS  Google Scholar 

  5. Chan, L. H. et al. Earth planet. Sci. Lett. 32, 258–267 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Chah, L. H., Drummond, D. & Edmond, J. M. Deep Sea Res. 24, 613–649 (1977).

    Article  ADS  Google Scholar 

  7. Revelle, R. R., Bramlette, M., Arrhenius, G. & Goldberg, E. D. Geol. Soc. Am. Bull. 62, 221–236 (1955).

    CAS  Google Scholar 

  8. Goldberg, E. D. & Arrhenius, G. O. S. Geochim. cosmochim. acta 13, 153–212 (1958).

    Article  ADS  CAS  Google Scholar 

  9. Arrhenius, G. O. S. & Bonatti, E. Progr. Oceanogr. 3, 7–22 (1965).

    Article  ADS  CAS  Google Scholar 

  10. Dymond, J. Trans. Am. geophys. Un. 66, 1275 (1985).

    Google Scholar 

  11. Schmitz, B. Paleoceanogr. 2, 63–77 (1987).

    Article  ADS  Google Scholar 

  12. Church, T. M. & Wolgemuth, K. Earth planet. Sci. Lett. 15, 35–44 (1972).

    Article  ADS  CAS  Google Scholar 

  13. Vinogradova, Z. A. & Koval'skiy, V. V. Dokl. Akad. Nauk. SSSR 147, 217–219 (1962).

    Google Scholar 

  14. Brongersma-Sanders, M. K. Ned. Akad. Wet. Proc. B70, 93–99 (1966).

    Google Scholar 

  15. Li, Y. H. & Chan, L. H. Earth planet. Sci. Lett. 43, 343–350 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Martin, J. H. & Knauer, G. A. Geochim. cosmochim. acta 37, 1639–1653 (1973).

    Article  ADS  CAS  Google Scholar 

  17. Dehairs, F., Lambert, C. E., Chesselet, R. & Risler, N. Biogeochemistry 4, 119–139 (1987).

    Article  CAS  Google Scholar 

  18. Tendal, O. S. Galethea Rep. 12, 8–99 (1972).

    Google Scholar 

  19. Findlay, B. J., Hetherington, N. B. & Davison, W. Geochim. cosmochim. acta 47, 1325–1329 (1983).

    Article  ADS  Google Scholar 

  20. Rieder, N., Ott, H. A., Pfundstein, P. & Schoch, R. J. Protozool. 29, 15–18 (1982).

    Article  CAS  Google Scholar 

  21. Bishop, J. K. B., Schupack, D., Sherrell, R. M. & Conte, M. H. in Mapping Strategies in Chemical Oceanography (ed. Zirino, A.) 155–176 (Am. Chem. Soc., Washington DC, 1985).

    Book  Google Scholar 

  22. Bishop, J. K. B. & Fleisher, M. Q. F. Geochim. cosmochim. acta 50, 2807–2826 (1987).

    Article  ADS  Google Scholar 

  23. Bishop, J. K. B. & Edmond, J. M. J. mar. Res. 34, 181–198 (1976).

    Google Scholar 

  24. Gardner, W. D. Limnol. Oceanogr. 22, 764–768 (1977).

    Article  ADS  Google Scholar 

  25. Kurz, M. D., Edmond, J. M. & Bishop, J. K. B. Trans. Am. geophys. Un. 58, 1171 (1977).

    Google Scholar 

  26. Bishop, J. K. B., Ketten, D. R. & Edmond, J. M. Deep Sea Res. 25, 1121–1161 (1978).

    Article  ADS  CAS  Google Scholar 

  27. Alldredge, A. L. & Youngbluth, M. J. Deep Sea Res. 32, 1445–1456 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, J. The barite-opal-organic carbon association in oceanic particulate matter. Nature 332, 341–343 (1988). https://doi.org/10.1038/332341a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332341a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing