Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

pH-sensitive activation of the intracellular-pH regulation system in squid axons by ATP-γ-S

Abstract

The regulation of intracellular pH (pHi) is essential for normal cell function1, and controlled changes in pHi may play a central role in cell activation2. Sodium-dependent Cl–HCO3 exchange is the dominant mechanism of pHi regulation in the invertebrate cells examined3–6, and also occurs in mammalian cells7,8. The transporter extrudes acid from the cell by exchanging extracellular Na+ and HCO3 (ref. 9) (or a related species) for intracellular Cl (refs 3, 4). It is blocked by the stilbene derivatives DIDS (4,4′-diisothiocyano-stilbene-2,2′-disulphonate, ref. 10) and SITS (4-acetamido-4′-isothiocyano-stilbene-2,2′-disulphonate, ref. 3), and has a stoichiometry of two intracellular H+ neutralized for each Na+ taken up and each Cl extruded by the axon11. Because the inwardly-directed Na+ concentration gradient is sufficiently large to energize both the HCO3 influx and Cl efflux, this electroneutral exchanger could be a classic secondary active transporter, thermodynamically independent of ATP hydrolysis. However, at least in the squid axon, the exchanger has an absolute requirement for ATP (ref. 3). Thus, a major unresolved issue is whether this Na-dependent Cl–HCO3 exchanger stoichiometri-cally hydrolyses ATP (the pump hypothesis), or whether ATP activates the transporter by a mechanism such as phosphorylation or simple binding (the activation hypothesis). We have now explored the role of ATP in pHi regulation by dialysing axons with the ATP analogue ATP-γ-S. In many systems, ATP–γ–S is an acceptable substrate for protein kinases12,13, whereas the resulting thiophosphorylated proteins are not as readily hydrolysed by phosphatases as are phosphorylated proteins14,15. Our results rule out the pump hypothesis, and show that the basis of the axon's ATP requirement is the pH-dependent activation (by, for instance, phosphorylation or ATP binding) of the exchanger itself, or of an essential activator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Roos, A. & Boron, W. F. Physiol. Rev. 61, 296–434 (1981).

    Article  CAS  Google Scholar 

  2. Moolenaar, W. H. A. Rev. Physiol. 48, 363–376 (1986).

    Article  CAS  Google Scholar 

  3. Russell, J. M. & Boron, W. F. Nature 264, 73–74 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Thomas, R. C. J. Physiol., Lond. 273, 317–338 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Boron, W. F., McCormick, W. C. & Roos, A. Am. J. Physiol. 240, C80–C89 (1981).

    Article  CAS  Google Scholar 

  6. Moody, W. J. Jr J. Physiol., Lond. 316, 293–308 (1981).

    Article  ADS  Google Scholar 

  7. L'Allemain, G., Paris, S. & Pouyssegur, J. J. biol. Chem. 260, 4877–4883 (1985).

    CAS  PubMed  Google Scholar 

  8. Rothenberg, P., Glaser, L., Schlesinger, P. & Cassel, D. J. biol. Chem. 20, 12644–12653 (1983).

    Google Scholar 

  9. Boron, W. F. & De Weer, P. Nature 259, 240–241 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Thomas, R. C. Nature 262, 54–55 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Boron, W. F. & Russell, J. M. J. gen. Physiol. 81, 373–399 (1983).

    Article  CAS  Google Scholar 

  12. Gratecos, D. & Fischer, E. H. Biochem. biophys. Res. Commun. 58, 960–967 (1974).

    Article  CAS  Google Scholar 

  13. Sun, I. Y., Johnson, E. M. & Allfrey, V. G. J. biol. Chem. 255, 742–747 (1980).

    CAS  PubMed  Google Scholar 

  14. Hauptmann, M., Winson, D. F. & Erecinska, M. Biochem. Pharmac. 8, 1247–1254 (1985).

    Article  Google Scholar 

  15. Brooks, J. C. & Brooks, M. Life Sci. 37, 1869–1875 (1985).

    Article  CAS  Google Scholar 

  16. Brinley, F. J. Jr & Mullins, L. J. J. gen. Physiol. 50, 2303–2331 (1967).

    Article  CAS  Google Scholar 

  17. Hinke, J. A. M. in Glass Electrodes for Hydrogen and Other Cations. Principle and Practice. (ed. Eisenman, G.) 464–477 (Dekker, New York, 1967).

    Google Scholar 

  18. Boron, W. F. & De Weer, P. J. gen. Physiol. 67, 91–112 (1976).

    Article  CAS  Google Scholar 

  19. Yates, D. W. & Duance, V. C. Biochem. J. 159, 719–728 (1976).

    Article  CAS  Google Scholar 

  20. Yasuoka, K., Kawakita, M. & Kaziro, Y. J. biochem., Tokyo 91, 1629–1637 (1982).

    Article  CAS  Google Scholar 

  21. DiPolo, R. & Beauge, L. Biochem. biophys. acta 897, 347–354 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boron, W., Hogan, E. & Russell, J. pH-sensitive activation of the intracellular-pH regulation system in squid axons by ATP-γ-S. Nature 332, 262–265 (1988). https://doi.org/10.1038/332262a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332262a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing