Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of K+(cryptand[2.2.2J) electride and evidence for trapped electron pairs

Abstract

Electrides are crystalline salts in which stoichiometric amounts of trapped or itinerant electrons serve as the anions1–8. The cations are alkali metal cations complexed by cyclic or bicyclic polyethers of the crown ether9 or cryptand10 classes. Optical spectra, powder conductivities and magnetic susceptibilities show that, in most electrides, individual electron localization occurs, presumably centred at the anionic sites, with trap depths of 0.5–1.0 eV. An exception is K+(cryptand[2.2.2]) ˙e-, which has a plasma-like optical absorption spectrum2, high microwave conductivity, a low activation energy for direct current powder conductivity (0.02 eV), and a weak, temperature-dependent electronic paramagnetic susceptibility. The crystal structure of this electride shows the presence of large (4×6×12Å) vacancies of complex shape, interconnected in two directions by zigzag channels, but blocked in the third direction. The structure and properties suggest the presence of weakly bound electron pairs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dye, J. L., Yemen, M. R., DaGue, M. G. & Lehn, J.-M. J. chem. Phys. 68, 1665–1670 (1978).

    Article  ADS  CAS  Google Scholar 

  2. DaGue, M. G., Landers, J. S., Lewis, H. L. & Dye, J. L. Chem. Phys. Lett. 66, 169–172 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Ellaboudy, A., Dye, J. L. & Smith, P. B. J. Am. chem. Soc. 105, 6490–6491 (1983).

    Article  CAS  Google Scholar 

  4. Dye, J. L. & Ellaboudy, A. Chem. Brit. 20, 210–215 (1984).

    CAS  Google Scholar 

  5. Dye, J. L. Prog. inorg. Chem. 32, 327–441 (1984).

    CAS  Google Scholar 

  6. Dawes, S. B., Ward, D. L., Huang, R. H. & Dye, J. L. J. Am. chem. Soc. 108, 3534–3535 (1986).

    Article  CAS  Google Scholar 

  7. Dye, J. L. & DeBacker, M. G. A. Rev. Phys. Chem. 38, 271–301 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Dye, J. L. Scient. Am. 257, 66–75 (1987).

    Article  Google Scholar 

  9. Pedersen, C. J. J. Am. chem. Soc. 89, 7017–7036 (1967).

    Article  CAS  Google Scholar 

  10. Dietrich, B., Lehn, J.-M. & Sauvage, J. P. Tetrahedron Lett. 2885–2888 (1969).

  11. Tehan, F. J., Barnett, B. L. & Dye, J. L. J. Am. chem. Soc. 96, 7203–7208 (1974).

    Article  CAS  Google Scholar 

  12. Harris, R. L. & Lagowski, J. J. J. phys. Chem. 82, 729–734 (1978).

    Article  CAS  Google Scholar 

  13. Thompson, J. C. Electrons in Liquid Ammonia (Oxford University Press, 1976).

  14. Edwards, P. P. Adv. inorg. Chem. Radiochem. 25, 135–185 (1982).

    Article  CAS  Google Scholar 

  15. Moras, P. D., Metz, B. & Weiss, R. Acta crystallogr. B29, 383–388 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, R., Faber, M., Moeggenborg, K. et al. Structure of K+(cryptand[2.2.2J) electride and evidence for trapped electron pairs . Nature 331, 599–601 (1988). https://doi.org/10.1038/331599a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331599a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing