Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural details of an adenine tract that does not cause DNA to bend

Abstract

Runs of adenines (adenine tracts) have been implicated as the main determinant of sequence-directed DNA bending1–4. The most widely used experimental test for bending relies on the observation that bent DNA migrates more slowly than straight DNA on a polyacrylamide electrophoresis gel11–5. It was shown recently that the polymer (G 1111 AAAAC)n runs with normal mobility on a gel, whereas (GAAAA'lTlTC)n runs more slowly and thus appears to be strongly bent6. The observation that these similar sequences, which differ only in the order of the adenine and thymine tracts, adopt such different shapes offers a stringent test of theories to explain DNA bending. Although the wedge model for DNA bending has recently been elaborated7 to explain the gel mobilities of these molecules, we wished to determine experimentally the structural basis for the difference in bending. We report here measurements of the frequency of cleavage by the hydroxyl radical at each nucleotide of cloned versions of the two polymers (see Fig. 1). We show that the TTTTAAAA sequence does not display the cleavage pattern that is associated with bent DNA8, whereas the AAAAlTl 1 sequence does. The observed sequence dependence of the cleavage pattern of an adenine tract is at odds with current models4,7 for DNA bending, which assume that adenine tracts always adopt the same conformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wu, H.-M. & Crothers, D. M. Nature 308, 509–513 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Hagerman, P. J. Biochemistry 24, 7033–7037 (1985).

    Article  CAS  Google Scholar 

  3. Diekmann, S. & Wang, J. J. molec. Biol 186, 1–11 (1985).

    Article  CAS  Google Scholar 

  4. Koo, H-S., Wu, H-M. & Crothers, D. M. Nature 320, 501–506 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Marini, J. C., Levene, S. D., Crothers, D. M. & Englund, P. T. Proc. natn. Acad. Sci. U.S.A. 79, 7664–7668 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Hagerman, P. J. Nature 321, 449–450 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Ulanovsky, L. E. & Trifonov, E. Nature 326, 720–722 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Burkhoff, A. M. & Tullius, T. D. Cell 48, 935–943 (1987).

    Article  CAS  Google Scholar 

  9. Tullius, T. D. & Dombroski, B. A. Science 230, 679–681 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Nelson, H. C. M., Finch, J. T., Luisi, B. F. & Klug, A. Nature 330, 221–226 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Coll, M., Frederick, C. A., Wang, A. H.-J. & Rich, A. Proc. natn. Acad. Sci. U.S.A 84, 8385–8389 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Fratini, A. V., Kopka, M. L., Drew, H. R. & Dickerson, R. E. J. biol. Chem. 257, 14686–14707 (1982).

    CAS  PubMed  Google Scholar 

  13. Drew, H. R. & Dickerson, R. E. J. molec. Biol. 151, 535–556 (1981).

    Article  CAS  Google Scholar 

  14. Chuprina, V. P. FEBS Lett. 186, 98–102 (1985).

    Article  CAS  Google Scholar 

  15. Chuprina, V. P. Nucleic Acids Res. 15, 293–311 (1987).

    Article  CAS  Google Scholar 

  16. Calladine, C. R. J. molec. Biol. 161, 343–352 (1982).

    Article  CAS  Google Scholar 

  17. Dickerson, R. E. J. molec. Biol. 166, 419–441 (1983).

    Article  CAS  Google Scholar 

  18. Drew, H. R. & Travers, A. Cell 37, 491–502 (1984).

    Article  CAS  Google Scholar 

  19. Trifonov, E. N. & Sussman, J. L. Proc. natn. Acad. Sci. U.S.A. 77, 3816–3820 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Maniatis, T., Fritsch, E. F. & Sambrook, J. in Molecular Cloning, a Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  21. Tullius, T. D., Dombroski, B. A., Churchill, M. E. A. & Kam, L. Meth. Enzym. 155, 537–558 (1987).

    Article  CAS  Google Scholar 

  22. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkhoff, A., Tullius, T. Structural details of an adenine tract that does not cause DNA to bend. Nature 331, 455–457 (1988). https://doi.org/10.1038/331455a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331455a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing