Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Origin of the herbicide binding site of acetolactate synthase

Abstract

Acetolactate synthase (ALS) is the site of action of several new, structurally diverse classes of herbicides (sulphonylurea1–4, imidazolinone5,6 and triazolo pyrimidine or sulphonanilide7,8). These herbicides are unusual inhibitors in that they bear no obvious similarity to substrates (pyruvate and α-ketobutyrate), cofactors (thiamine pyrophosphate, FAD and magnesium), or allosteric effectors (valine, leucine and isoleucine) of this enzyme. They also interact in a complex way, in that time-dependent inhibition is observed1,6,8,9, with tightest binding of the herbicide occurring under conditions of enzymatic turnover1,9. Recently, the identity of the herbicide-specific site has been suggested by the discovery that the sequence of pyruvate oxidase10 is very similar to that of ALS11–16. We propose that the herbicide-specific site of ALS is an evolutionary vestige of the quinone17 binding site of pyruvate oxidase. Consistent with this proposal, the ubiquinone homologues Q0and Q1 are potent inhibitors of ALS, and Q0, an imidazolinone herbicide (imazaquin), and a sulphonanilide herbicide, each compete with a radiolabelled sulphonylurea herbicide (sulphometuron methyl) for a common binding site on ALS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. LaRossa, R. A. & Schloss, J. V. J. biol. Chem. 259, 8753–8757 (1984).

    CAS  PubMed  Google Scholar 

  2. Falco, S. C. & Dumas, K. S. Genetics 109, 21–35 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chaleff, R. S. & Mauvais, C. J. Science 224, 1443–1445 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Ray, T. B. Pl. Physiol. 75, 827–832 (1984).

    Article  CAS  Google Scholar 

  5. Shaner, D. L., Anderson, P. C. & Stidham, M. A. Pl. Physiol. 76, 545–546 (1984).

    Article  CAS  Google Scholar 

  6. Muhitch, M. J., Shaner, D. L. & Stidham, M. A. Pl. Physiol. 83, 451–456 (1987).

    Article  CAS  Google Scholar 

  7. Kleschick, W. A. et al. Eur. Pat. Applic. 142152 (1984).

  8. Hawkes, T. R., Howard, J. L. & Pontin, S. E. in Herbicides and Plant Metabolism (SEB Seminar Series) (ed. Dodge, A. D.) (Cambridge Academic, Cambridge, in the press).

  9. Schloss, J. V. in Flavins and Flavoproteins (eds Bray, R. C., Engel, P. C. & Mayhew, S. G.) 737–740 (de Gruyter, Berlin, 1984).

    Google Scholar 

  10. Grabau, C. & Cronan, J. E. Jr Nucleic Acids Res. 14, 5449–5460 (1986).

    Article  CAS  Google Scholar 

  11. Wek, R. C., Hauser, C. A. & Hatfield, G. W. Nucleic Acids Res. 13, 3995–4010 (1985).

    Article  CAS  Google Scholar 

  12. Friden, P. et al. Nucleic Acids Res. 13, 3979–3993 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Lawther, R. P. et al. Proc. natn. Acad. Sci. U.S.A. 78, 922–925 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Squires, C. H., De Felice, M., Devereux, J. & Calvo, J. M. Nucleic Acids Res. 11, 5299–5313 (1983).

    Article  CAS  Google Scholar 

  15. Falco, S. C., Dumas, K. S. & Livak, K. J. Nucleic Acids Res. 13, 4011–4027 (1985).

    Article  CAS  Google Scholar 

  16. Mazur, B. J., Chui, C.-F. & Smith, J. K. Pl. Physiol. 85, 1110–1117 (1987).

    Article  CAS  Google Scholar 

  17. Koland, J. G., Miller, M. J. & Gennis, R. B. Biochemistry 23, 445–453 (1984).

    Article  CAS  Google Scholar 

  18. Schloss, J. V., Van Dyk, D. E., Vasta, J. F. & Kutny, R. M. Biochemistry 24, 4952–4959 (1985).

    Article  CAS  Google Scholar 

  19. Stømer, F. C. & Umbarger, H. E. Biochem. biophys. Res. Commun. 17, 587–592 (1964).

    Article  Google Scholar 

  20. Kiuchi, K. & Hager, L. P. Archs Biochem. Biophys. 233, 776–784 (1984).

    Article  CAS  Google Scholar 

  21. Carter, K. & Gennis, R. B. J. biol. Chem. 260, 10986–10990 (1985).

    CAS  PubMed  Google Scholar 

  22. Cunningham, C. C. & Hager, L. P. J. biol. Chem. 246, 1575–1582 (1971).

    CAS  PubMed  Google Scholar 

  23. Mather, M. W. & Gennis, R. B. J. biol. Chem. 260, 16148–16155 (1985).

    CAS  PubMed  Google Scholar 

  24. Grabau, C. & Cronan, J. E. Jr Biochemistry 25, 3748–3751 (1986).

    Article  CAS  Google Scholar 

  25. Russell, P., Schrock, H. L. & Gennis, R. B. J. biol. Chem. 252, 7883–7887 (1977).

    CAS  PubMed  Google Scholar 

  26. Steinback, K. E., Fister, K. & Arntzen, C. J. in Biochemical Responses Induced by Herbicides (eds Moreland, D. E., St. John, J. B. & Hess, F. D.) 37–55 (American Chemical Society, Washington, D.C., 1982).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schloss, J., Ciskanik, L. & Dyk, D. Origin of the herbicide binding site of acetolactate synthase. Nature 331, 360–362 (1988). https://doi.org/10.1038/331360a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331360a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing