Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Drosophila deoxyribonucleoside kinase mutants with enhanced ability to phosphorylate purine analogs

Abstract

Transduced deoxyribonucleoside kinases (dNK) can be used to kill recipient cells in combination with nucleoside prodrugs. The Drosophila melanogaster multisubstrate dNK (Dm-dNK) displays a superior turnover rate and has a great plasticity regarding its substrates. We used directed evolution to create Dm-dNK mutants with increased specificity for several nucleoside analogs (NAs) used as anticancer or antiviral drugs. Four mutants were characterized for the ability to sensitize Escherichia coli toward analogs and for their substrate specificity and kinetic parameters. The mutants had a reduced ability to phosphorylate pyrimidines, while the ability to phosphorylate purine analogs was relatively similar to the wild-type enzyme. We selected two mutants, for expression in the osteosarcoma 143B, the glioblastoma U-87M-G and the breast cancer MCF7 cell lines. The sensitivities of the transduced cell lines in the presence of the NAs fludarabine (F-AraA), cladribine (CdA), vidarabine and cytarabine were compared to the parental cell lines. The sensitivity of 143B cells was increased by 470-fold in the presence of CdA and of U-87M-G cells by 435-fold in the presence of F-AraA. We also show that a choice of the selection and screening system plays a crucial role when optimizing suicide genes by directed evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

AraA:

vidarabine, 9-β-D-arabinofuranosyladenine

AraC, cytarabine:

1-β-D-arabinofuranosylcytosine

AZT:

azidothymidine

CdA:

cladribine, 2-chloro 2′-deoxyadenosine

dAdo:

deoxyadenosine

dCyd:

deoxycytidine

ddA:

dideoxyadenosine

ddC:

(zalcitabine) 2′,3′-dideoxycytidine

dGuo:

deoxyguanosine

dN:

deoxyribonucleoside

dNK:

deoxyribnonucleoside kinase

dNMP:

deoxyribonucleoside monophosphate

Dm-dNK:

Drosophila melanogaster multisubstrate deoxyribonucleoside kinase

dTTP:

thymidine triphosphate

dUrd:

deoxyuridine

F-AraA:

(fludarabine) 9-β-D-arabinofuranosyl-2-fluoroadenine

Thd:

thymidine

References

  1. Arner ES, Eriksson S . Mammalian deoxyribonucleoside kinases. Pharmacol Ther 1995; 67: 155–186.

    Article  CAS  Google Scholar 

  2. Sandrini MP, Piskur J . Deoxyribonucleoside kinases: two enzyme families catalyze the same reaction. Trends Biochem Sci 2005; 30: 225–228.

    Article  CAS  Google Scholar 

  3. Welin M, Kosinska U, Mikkelsen NE, Carnrot C, Zhu C, Wang L et al. Structures of thymidine kinase 1 of human and mycoplasmic origin. Proc Natl Acad Sci USA 2004; 101: 17970–17975.

    Article  CAS  Google Scholar 

  4. Sabini E, Ort S, Monnerjahn C, Konrad M, Lavie A . Structure of human dCK suggests strategies to improve anticancer and antiviral therapy. Nat Struct Biol 2003; 10: 513–519.

    Article  CAS  Google Scholar 

  5. Knecht W, Sandrini MP, Johansson K, Eklund H, Munch-Petersen B, Piskur J . A few amino acid substitutions can convert deoxyribonucleoside kinase specificity from pyrimidines to purines. EMBO J 2002; 21: 1873–1880.

    Article  CAS  Google Scholar 

  6. Knecht W, Munch-Petersen B, Piskur J . Identification of residues involved in the specificity and regulation of the highly efficient multisubstrate deoxyribonucleoside kinase from Drosophila melanogaster. J Mol Biol 2000; 301: 827–837.

    Article  CAS  Google Scholar 

  7. Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM . In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 1992; 256: 1550–1552.

    Article  CAS  Google Scholar 

  8. Guettari N, Loubiere L, Brisson E, Klatzmann D . Use of herpes simplex virus thymidine kinase to improve the antiviral activity of zidovudine. Virology 1997; 235: 398–405.

    Article  CAS  Google Scholar 

  9. Sterman DH, Recio A, Vachani A, Sun J, Cheung L, DeLong P et al. Long-term follow-up of patients with malignant pleural mesothelioma receiving high-dose adenovirus herpes simplex thymidine kinase/ganciclovir suicide gene therapy. Clin Cancer Res 2005; 11: 7444–7453.

    Article  CAS  Google Scholar 

  10. Black ME, Newcomb TG, Wilson HM, Loeb LA . Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc Natl Acad Sci USA 1996; 93: 3525–3529.

    Article  CAS  Google Scholar 

  11. Christians FC, Scapozza L, Crameri A, Folkers G, Stemmer WP et al. Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shuffling. Nat Biotechnol 1999; 17: 259–264.

    Article  CAS  Google Scholar 

  12. Kokoris MS, Sabo P, Adman ET, Black ME . Enhancement of tumor ablation by a selected HSV-1 thymidine kinase mutant. Gene Therapy 1999; 6: 1415–1426.

    Article  CAS  Google Scholar 

  13. Munch-Petersen B, Piskur J, Sondergaard L . Four deoxynucleoside kinase activities from Drosophila melanogaster are contained within a single monomeric enzyme, a new multifunctional deoxynucleoside kinase. J Biol Chem 1998; 273: 3926–3931.

    Article  CAS  Google Scholar 

  14. Munch-Petersen B, Knecht W, Lenz C, Sondergaard L, Piskur J . Functional expression of a multisubstrate deoxyribonucleoside kinase from Drosophila melanogaster and its C-terminal deletion mutants. J Biol Chem 2000; 275: 6673–6679.

    Article  CAS  Google Scholar 

  15. Knecht W, Petersen GE, Sandrini MP, Sondergaard L, Munch-Petersen B, Piskur J . Mosquito has a single multisubstrate deoxyribonucleoside kinase characterized by unique substrate specificity. Nucleic Acids Res 2003; 31: 1665–1672.

    Article  CAS  Google Scholar 

  16. Knecht W, Petersen GE, Munch-Petersen B, Piskur J . Deoxyribonucleoside kinases belonging to the thymidine kinase 2 (TK2)-like group vary significantly in substrate specificity, kinetics and feed-back regulation. J Mol Biol 2002; 315: 529–540.

    Article  CAS  Google Scholar 

  17. Solaroli N, Bjerke M, Amiri MH, Johansson M, Karlsson A . Active site mutants of Drosophila melanogaster multisubstrate deoxyribonucleoside kinase. Eur J Biochem 2003; 270: 2879–2884.

    Article  CAS  Google Scholar 

  18. Solaroli N, Johansson M, Balzarini J, Karlsson A . Enhanced toxicity of purine nucleoside analogs in cells expressing Drosophila melanogaster nucleoside kinase mutants. Gene Therapy 2007; 14: 86–92.

    Article  CAS  Google Scholar 

  19. Zheng X, Johansson M, Karlsson A . Retroviral transduction of cancer cell lines with the gene encoding Drosophila melanogaster multisubstrate deoxyribonucleoside kinase. J Biol Chem 2000; 275: 39125–39129.

    Article  CAS  Google Scholar 

  20. Griffiths AD, Tawfik DS . Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBO J 2003; 22: 24–35.

    Article  CAS  Google Scholar 

  21. Cherry JR, Lamsa MH, Schneider P, Vind J, Svendsen A, Jones A et al. Directed evolution of a fungal peroxidase. Nat Biotechnol 1999; 17: 379–384.

    Article  CAS  Google Scholar 

  22. Kim YW, Choi JH, Kim JW, Park C, Cha H, Lee SB et al. Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Appl Environ Microbiol 2003; 69: 4866–4874.

    Article  CAS  Google Scholar 

  23. Zhao H, Arnold FH . Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng 1999; 12: 47–53.

    Article  CAS  Google Scholar 

  24. Knecht W, Willemse J, Stenhamre H, Andersson M, Berntsson P, Furebring C et al. Limited mutagenesis increases the stability of human carboxypeptidase U (TAFIa) and demonstrates the importance of CPU stability over proCPU concentration in down-regulating fibrinolysis. FEBS J 2006; 273: 778–792.

    Article  CAS  Google Scholar 

  25. Mikkelsen NE, Johansson K, Karlsson A, Knecht W, Andersen G, Piskur J et al. Structural basis for feedback inhibition of the deoxyribonucleoside salvage pathway: studies of the Drosophila deoxyribonucleoside kinase. Biochemistry 2003; 42: 5706–5712.

    Article  CAS  Google Scholar 

  26. Welin M, Skovgaard T, Knecht W, Zhu C, Berenstein D, Munch-Petersen B et al. Structural basis for the changed substrate specificity of Drosophila melanogaster deoxyribonucleoside kinase mutant N64D. FEBS J 2005; 272: 3733–3742.

    Article  CAS  Google Scholar 

  27. Johansson K, Ramaswamy S, Ljungcrantz C, Knecht W, Piskur J, Munch-Petersen B et al. Structural basis for substrate specificities of cellular deoxyribonucleoside kinases. Nat Struct Biol 2001; 8: 616–620.

    Article  CAS  Google Scholar 

  28. Igarashi K, Hiraga S, Yura T . A deoxythymidine kinase deficient mutant of Escherichia coli II. Mapping and transduction studies with phage phi 80. Genetics 1967; 57: 643–654.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ausubel F, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA et al. (eds). Short Protocols in Molecular Biology. Wiley: USA, 1995.

    Google Scholar 

  30. Bradford MM . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 1976; 72: 248–254.

    Article  CAS  Google Scholar 

  31. Laemmli UK . Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685.

    Article  CAS  Google Scholar 

  32. Knecht W, Bergjohann U, Gonski S, Kirschbaum B, Loffler M . Functional expression of a fragment of human dihydroorotate dehydrogenase by means of the baculovirus expression vector system, and kinetic investigation of the purified recombinant enzyme. Eur J Biochem 1996; 240: 292–301.

    Article  CAS  Google Scholar 

  33. Cornish-Bowden A . Fundamentals of Enzyme Kinetics. Portland Press Ltd: London, 1995.

    Google Scholar 

  34. Liebecg C . IUBMB Biochemical Nomenclature and Related Documents. Portland Press Ltd: London, 1992.

    Google Scholar 

Download references

Acknowledgements

We thank the Danish and Swedish Research Councils, the Danish Cancer Society, Swedish Cancer Fonden and the Meyer Foundation (Copenhagen) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Piskur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knecht, W., Rozpedowska, E., Le Breton, C. et al. Drosophila deoxyribonucleoside kinase mutants with enhanced ability to phosphorylate purine analogs. Gene Ther 14, 1278–1286 (2007). https://doi.org/10.1038/sj.gt.3302982

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302982

Keywords

This article is cited by

Search

Quick links