Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy progress and prospects: Ultrasound for gene transfer

Abstract

Ultrasound exposure (USE) in the presence of microbubbles (MCB) (e.g. contrast agents used to enhance ultrasound imaging) increases plasmid transfection efficiency in vitro by several orders of magnitude. Formation of short-lived pores in the plasma membrane (‘sonoporation’), up to 100 nm in effective diameter lasting a few seconds, is implicated as the dominant mechanism, associated with acoustic cavitation. Ultrasound enhanced gene transfer (UEGT) has also been successfully achieved in vivo, with reports of spatially restricted and therapeutically relevant levels of transgene expression. Loading MCB with nucleic acids and/or disease-targeting ligands may further improve the efficiency and specificity of UEGT such that clinical testing becomes a realistic prospect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Liang HD, Lu QL, Xue SA, Halliwell M, Kodama T, Cosgrove DO et al. Optimisation of ultrasound-mediated gene transfer (sonoporation) in skeletal muscle cells. Ultrasound Med Biol 2004; 30: 1523–1529.

    Article  Google Scholar 

  2. Michel MS, Erben P, Trojan L, Schaaf A, Kiknavelidze K, Knoll T et al. Acoustic energy: a new transfection method for cancer of the prostate, cancer of the bladder and benign kidney cells. Anticancer Res 2004; 24: 2303–2308.

    CAS  PubMed  Google Scholar 

  3. Mehier-Humbert S, Bettinger T, Yan F, Guy RH . Ultrasound-mediated gene delivery: kinetics of plasmid internalization and gene expression. J Control Release 2005; 104: 203–211.

    Article  CAS  Google Scholar 

  4. Akowuah EF, Gray C, Lawrie A, Sheridan PJ, Su CH, Bettinger T et al. Ultrasound-mediated delivery of TIMP-3 plasmid DNA into saphenous vein leads to increased lumen size in a porcine interposition graft model. Gene Therapy 2005; 12: 1154–1157.

    Article  CAS  Google Scholar 

  5. Zhou QH, Miller DL, Carlisle RC, Seymour LW, Oupicky D . Ultrasound-enhanced transfection activity of HPMA-stabilized DNA polyplexes with prolonged plasma circulation. J Control Release 2005; 106: 416–427.

    Article  CAS  Google Scholar 

  6. Rahim AA, Taylor SL, Bush NL, Ter Haar GR, Bamber JC, Porter CD . Spatial and acoustic pressure dependence of microbubble-mediated gene delivery targeted using focused ultrasound. J Gene Med 2006; 8: 1347–1357.

    Article  Google Scholar 

  7. Rahim AA, Taylor SL, Bush NL, Ter Haar GR, Bamber JC, Porter CD . Physical parameters affecting ultrasound/microbubble-mediated gene delivery efficiency in vitro. Ultrasound Med Biol 2006; 32: 1269–1279.

    Article  Google Scholar 

  8. Fischer AJ, Stanke JJ, Omar G, Askwith CC, Burry RW . Ultrasound-mediated gene transfer into neuronal cells. J Biotechnol 2006; 122: 393–411.

    Article  CAS  Google Scholar 

  9. Guo DP, Li XY, Sun P, Tang YB, Chen XY, Chen Q et al. Ultrasound-targeted microbubble destruction improves the low density lipoprotein receptor gene expression in HepG2 cells. Biochem Biophys Res Commun 2006; 343: 470–474.

    Article  CAS  Google Scholar 

  10. Feril Jr LB, Kondo T, Zhao QL, Ogawa R, Tachibana K, Kudo N et al. Enhancement of ultrasound-induced apoptosis and cell lysis by echo-contrast agents. Ultrasound Med Biol 2003; 29: 331–337.

    Article  Google Scholar 

  11. Marmottant P, Hilgenfeldt S . Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 2003; 423: 153–156.

    Article  CAS  Google Scholar 

  12. Sundaram J, Mellein BR, Mitragotri S . An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys J 2003; 84: 3087–3101.

    Article  CAS  Google Scholar 

  13. Brujan EA . The role of cavitation microjets in the therapeutic applications of ultrasound. Ultrasound Med Biol 2004; 30: 381–387.

    Article  CAS  Google Scholar 

  14. Deng CX, Sieling F, Pan H, Cui J . Ultrasound-induced cell membrane porosity. Ultrasound Med Biol 2004; 30: 519–526.

    Article  Google Scholar 

  15. Zarnitsyn VG, Prausnitz MR . Physical parameters influencing optimization of ultrasound-mediated DNA transfection. Ultrasound Med Biol 2004; 30: 527–538.

    Article  Google Scholar 

  16. Brujan EA, Ikeda T, Matsumoto Y . Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Phys Med Biol 2005; 50: 4797–4809.

    Article  CAS  Google Scholar 

  17. Duvshani-Eshet M, Machluf M . Therapeutic ultrasound optimization for gene delivery: a key factor achieving nuclear DNA localization. J Control Release 2005; 108: 513–528.

    Article  CAS  Google Scholar 

  18. Hauff P, Seemann S, Reszka R, Schultze-Mosgau M, Reinhardt M, Buzasi T et al. Evaluation of gas-filled microparticles and sonoporation as gene delivery system: feasibility study in rodent tumor models. Radiology 2005; 236: 572–578.

    Article  Google Scholar 

  19. Kinoshita M, Hynynen K . A novel method for the intracellular delivery of siRNA using microbubble-enhanced focused ultrasound. Biochem Biophys Res Commun 2005; 335: 393–399.

    Article  CAS  Google Scholar 

  20. Pan H, Zhou Y, Izadnegahdar O, Cui J, Deng CX . Study of sonoporation dynamics affected by ultrasound duty cycle. Ultrasound Med Biol 2005; 31: 849–856.

    Article  Google Scholar 

  21. Larina IV, Evers BM, Esenaliev RO . Optimal drug and gene delivery in cancer cells by ultrasound-induced cavitation. Anticancer Res 2005; 25: 149–156.

    CAS  PubMed  Google Scholar 

  22. Duvshani-Eshet M, Baruch L, Kesselman E, Shimoni E, Machluf M . Therapeutic ultrasound-mediated DNA to cell and nucleus: bioeffects revealed by confocal and atomic force microscopy. Gene Therapy 2006; 13: 163–172.

    Article  CAS  Google Scholar 

  23. Duvshani-Eshet M, Adam D, Machluf M . The effects of albumin-coated microbubbles in DNA delivery mediated by therapeutic ultrasound. J Control Release 2006; 112: 156–166.

    Article  CAS  Google Scholar 

  24. Hallow DM, Mahajan AD, McCutchen TE, Prausnitz MR . Measurement and correlation of acoustic cavitation with cellular bioeffects. Ultrasound Med Biol 2006; 32: 1111–1122.

    Article  Google Scholar 

  25. Juffermans L, Dijkmans PA, Musters RJ, Visser CA, Kamp O . Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide. Am J Physiol Heart Circ Physiol 2006; 291: H1595–H1601.

    Article  CAS  Google Scholar 

  26. Kagiya G, Ogawa R, Tabuchi Y, Feril Jr LB, Nozaki T, Fukuda S et al. Expression of heme oxygenase-1 due to intracellular reactive oxygen species induced by ultrasound. Ultrason Sonochem 2006; 13: 388–396.

    Article  CAS  Google Scholar 

  27. Khanna S, Hudson B, Pepper CJ, Amso NN, Coakley WT . Fluorescein isothiocynate-dextran uptake by Chinese hamster ovary cells in a 1.5 MHz ultrasonic standing wave in the presence of contrast agent. Ultrasound Med Biol 2006; 32: 289–295.

    Article  Google Scholar 

  28. Kodama T, Tomita Y, Koshiyama K, Blomley MJ . Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble. Ultrasound Med Biol 2006; 32: 905–914.

    Article  Google Scholar 

  29. Schlicher RK, Radhakrishna H, Tolentino TP, Apkarian RP, Zarnitsyn V, Prausnitz MR . Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med Biol 2006; 32: 915–924.

    Article  Google Scholar 

  30. van Wamel A, Kooiman K, Harteveld M, Emmer M, ten Cate FJ, Versluis M et al. Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release 2006; 112: 149–155.

    Article  CAS  Google Scholar 

  31. O'Brien Jr WD . Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol 2007; 93: 212–255.

    Article  Google Scholar 

  32. Kimmel E . Cavitation bioeffects. Crit Rev Biomed Eng 2006; 34: 105–161.

    Article  Google Scholar 

  33. Klibanov AL . Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest Radiol 2006; 41: 354–362.

    Article  Google Scholar 

  34. Liu Y, Miyoshi H, Nakamura M . Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J Control Release 2006; 114: 89–99.

    Article  CAS  Google Scholar 

  35. Pislaru SV, Pislaru C, Kinnick RR, Singh R, Gulati R, Greenleaf JF et al. Optimization of ultrasound-mediated gene transfer: comparison of contrast agents and ultrasound modalities. Eur Heart J 2003; 24: 1690–1698.

    Article  CAS  Google Scholar 

  36. Guo DP, Li XY, Sun P, Wang ZG, Chen XY, Chen Q et al. Ultrasound/microbubble enhances foreign gene expression in ECV304 cells and murine myocardium. Acta Biochim Biophys Sin (Shanghai) 2004; 36: 824–831.

    Article  CAS  Google Scholar 

  37. Sakakima Y, Hayashi S, Yagi Y, Hayakawa A, Tachibana K, Nakao A . Gene therapy for hepatocellular carcinoma using sonoporation enhanced by contrast agents. Cancer Gene Ther 2005; 12: 884–889.

    Article  CAS  Google Scholar 

  38. Forsberg F, Shi WT, Merritt CR, Dai Q, Solcova M, Goldberg BB . On the usefulness of the mechanical index displayed on clinical ultrasound scanners for predicting contrast microbubble destruction. J Ultrasound Med 2005; 24: 443–450.

    Article  Google Scholar 

  39. Forsberg F, Merton DA, Goldberg BB . In vivo destruction of ultrasound contrast microbubbles is independent of the mechanical index. J Ultrasound Med 2006; 25: 143–144.

    Article  Google Scholar 

  40. van Wamel A, Bouakaz A, Versluis M, de Jong N . Micromanipulation of endothelial cells: ultrasound-microbubble-cell interaction. Ultrasound Med Biol 2004; 30: 1255–1258.

    Article  Google Scholar 

  41. Mehier-Humbert S, Bettinger T, Yan F, Guy RH . Plasma membrane poration induced by ultrasound exposure: implication for drug delivery. J Control Release 2005; 104: 213–222.

    Article  CAS  Google Scholar 

  42. Korosoglou G, Hardt SE, Bekeredjian R, Jenne J, Konstantin M, Hagenmueller M et al. Ultrasound exposure can increase the membrane permeability of human neutrophil granulocytes containing microbubbles without causing complete cell destruction. Ultrasound Med Biol 2006; 32: 297–303.

    Article  Google Scholar 

  43. Kodama T, Tan PH, Offiah I, Partridge T, Cook T, George AJ et al. Delivery of oligodeoxynucleotides into human saphenous veins and the adjunct effect of ultrasound and microbubbles. Ultrasound Med Biol 2005; 31: 1683–1691.

    Article  Google Scholar 

  44. Postema M, van Wamel A, Lancee CT, de Jong N . Ultrasound-induced encapsulated microbubble phenomena. Ultrasound Med Biol 2004; 30: 827–840.

    Article  Google Scholar 

  45. Postema M, van Wamel A, ten Cate FJ, de Jong N . High-speed photography during ultrasound illustrates potential therapeutic applications of microbubbles. Med Phys 2005; 32: 3707–3711.

    Article  Google Scholar 

  46. Lawrie A, Brisken AF, Francis SE, Wyllie D, Kiss-Toth E, Qwarnstrom EE et al. Ultrasound-enhanced transgene expression in vascular cells is not dependent upon cavitation-induced free radicals. Ultrasound Med Biol 2003; 29: 1453–1461.

    Article  Google Scholar 

  47. Wei W, Zheng-zhong B, Yong-jie W, Qing-wu Z, Ya-lin M . Bioeffects of low-frequency ultrasonic gene delivery and safety on cell membrane permeability control. J Ultrasound Med 2004; 23: 1569–1582.

    Article  Google Scholar 

  48. Azuma H, Tomita N, Kaneda Y, Koike H, Ogihara T, Katsuoka Y et al. Transfection of NFkappaB-decoy oligodeoxynucleotides using efficient ultrasound-mediated gene transfer into donor kidneys prolonged survival of rat renal allografts. Gene Therapy 2003; 10: 415–425.

    Article  CAS  Google Scholar 

  49. Bekeredjian R, Chen S, Frenkel PA, Grayburn PA, Shohet RV . Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation 2003; 108: 1022–1026.

    Article  Google Scholar 

  50. Chen S, Shohet RV, Bekeredjian R, Frenkel P, Grayburn PA . Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. J Am Coll Cardiol 2003; 42: 301–308.

    Article  CAS  Google Scholar 

  51. Christiansen JP, French BA, Klibanov AL, Kaul S, Lindner JR . Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Biol 2003; 29: 1759–1767.

    Article  Google Scholar 

  52. Lan HY, Mu W, Tomita N, Huang XR, Li JH, Zhu HJ et al. Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol 2003; 14: 1535–1548.

    Article  CAS  Google Scholar 

  53. Li T, Tachibana K, Kuroki M, Kuroki M . Gene transfer with echo-enhanced contrast agents: comparison between Albunex, Optison, and Levovist in mice – initial results. Radiology 2003; 229: 423–428.

    Article  Google Scholar 

  54. Lu QL, Liang HD, Partridge T, Blomley MJ . Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Therapy 2003; 10: 396–405.

    Article  CAS  Google Scholar 

  55. Kondo I, Ohmori K, Oshita A, Takeuchi H, Fuke S, Shinomiya K et al. Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a ‘functional’ gene using ultrasonic microbubble destruction. J Am Coll Cardiol 2004; 44: 644–653.

    Article  CAS  Google Scholar 

  56. Zhigang W, Zhiyu L, Haitao R, Hong R, Qunxia Z, Ailong H et al. Ultrasound-mediated microbubble destruction enhances VEGF gene delivery to the infarcted myocardium in rats. Clin Imaging 2004; 28: 395–398.

    Article  Google Scholar 

  57. Hou CC, Wang W, Huang XR, Fu P, Chen TH, Sheikh-Hamad D et al. Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-beta signaling and fibrosis in rat remnant kidney. Am J Pathol 2005; 166: 761–771.

    Article  CAS  Google Scholar 

  58. Koike H, Tomita N, Azuma H, Taniyama Y, Yamasaki K, Kunugiza Y et al. An efficient gene transfer method mediated by ultrasound and microbubbles into the kidney. J Gene Med 2005; 7: 108–116.

    Article  CAS  Google Scholar 

  59. Korpanty G, Chen S, Shohet RV, Ding J, Yang B, Frenkel PA et al. Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles. Gene Therapy 2005; 12: 1305–1312.

    Article  CAS  Google Scholar 

  60. Tsunoda S, Mazda O, Oda Y, Iida Y, Akabame S, Kishida T et al. Sonoporation using microbubble BR14 promotes pDNA/siRNA transduction to murine heart. Biochem Biophys Res Commun 2005; 336: 118–127.

    Article  CAS  Google Scholar 

  61. Wang X, Liang HD, Dong B, Lu QL, Blomley MJ . Gene transfer with microbubble ultrasound and plasmid DNA into skeletal muscle of mice: comparison between commercially available microbubble contrast agents. Radiology 2005; 237: 224–229.

    Article  Google Scholar 

  62. Zhang Q, Wang Z, Ran H, Fu X, Li X, Zheng Y et al. Enhanced gene delivery into skeletal muscles with ultrasound and microbubble techniques. Acad Radiol 2006; 13: 363–367.

    Article  Google Scholar 

  63. Hashiya N, Aoki M, Tachibana K, Taniyama Y, Yamasaki K, Hiraoka K et al. Local delivery of E2F decoy oligodeoxynucleotides using ultrasound with microbubble agent (Optison) inhibits intimal hyperplasia after balloon injury in rat carotid artery model. Biochem Biophys Res Commun 2004; 317: 508–514.

    Article  CAS  Google Scholar 

  64. Inagaki H, Suzuki J, Ogawa M, Taniyama Y, Morishita R, Isobe M . Ultrasound-microbubble-mediated NF-kappaB decoy transfection attenuates neointimal formation after arterial injury in mice. J Vasc Res 2006; 43: 12–18.

    Article  CAS  Google Scholar 

  65. Shimamura M, Sato N, Taniyama Y, Yamamoto S, Endoh M, Kurinami H et al. Development of efficient plasmid DNA transfer into adult rat central nervous system using microbubble-enhanced ultrasound. Gene Therapy 2004; 11: 1532–1539.

    Article  CAS  Google Scholar 

  66. Manome Y, Nakayama N, Nakayama K, Furuhata H . Insonation facilitates plasmid DNA transfection into the central nervous system and microbubbles enhance the effect. Ultrasound Med Biol 2005; 31: 693–702.

    Article  Google Scholar 

  67. Nishida K, Doita M, Takada T, Kakutani K, Miyamoto H, Shimomura T et al. Sustained transgene expression in intervertebral disc cells in vivo mediated by microbubble-enhanced ultrasound gene therapy. Spine 2006; 31: 1415–1419.

    Article  Google Scholar 

  68. Dittmar KM, Xie J, Hunter F, Trimble C, Bur M, Frenkel V et al. Pulsed high-intensity focused ultrasound enhances systemic administration of naked DNA in squamous cell carcinoma model: initial experience. Radiology 2005; 235: 541–546.

    Article  Google Scholar 

  69. Chen S, Ding JH, Bekeredjian R, Yang BZ, Shohet RV, Johnston SA et al. Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci USA 2006; 103: 8469–8474.

    Article  CAS  Google Scholar 

  70. Miao CH, Brayman AA, Loeb KR, Ye P, Zhou L, Mourad P et al. Ultrasound enhances gene delivery of human factor IX plasmid. Hum Gene Ther 2005; 16: 893–905.

    Article  CAS  Google Scholar 

  71. Vancraeynest D, Havaux X, Pouleur AC, Pasquet A, Gerber B, Beauloye C et al. Myocardial delivery of colloid nanoparticles using ultrasound-targeted microbubble destruction. Eur Heart J 2006; 27: 237–245.

    Article  CAS  Google Scholar 

  72. Imada T, Tatsumi T, Mori Y, Nishiue T, Yoshida M, Masaki H et al. Targeted delivery of bone marrow mononuclear cells by ultrasound destruction of microbubbles induces both angiogenesis and arteriogenesis response. Arterioscler Thromb Vasc Biol 2005; 25: 2128–2134.

    Article  CAS  Google Scholar 

  73. Zen K, Okigaki M, Hosokawa Y, Adachi Y, Nozawa Y, Takamiya M et al. Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response. J Mol Cell Cardiol 2006; 40: 799–809.

    Article  CAS  Google Scholar 

  74. Miller DL, Song J . Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo. Ultrasound Med Biol 2003; 29: 887–893.

    Article  Google Scholar 

  75. Jakobsen JA, Oyen R, Thomsen HS, Morcos SK . Safety of ultrasound contrast agents. Eur Radiol 2005; 15: 941–945.

    Article  Google Scholar 

  76. Paliwal S, Mitragotri S . Ultrasound-induced cavitation: applications in drug and gene delivery. Expert Opin Drug Deliv 2006; 3: 713–726.

    Article  CAS  Google Scholar 

  77. Ter Haar G . Therapeutic applications of ultrasound. Prog Biophys Mol Biol 2007; 93: 111–129.

    Article  Google Scholar 

  78. Lentacker I, De Geest BG, Vandenbroucke RE, Peeters L, Demeester J, De Smedt SC et al. Ultrasound-responsive polymer-coated microbubbles that bind and protect DNA. Langmuir 2006; 22: 7273–7278.

    Article  CAS  Google Scholar 

  79. Feril Jr LB, Ogawa R, Kobayashi H, Kikuchi H, Kondo T . Ultrasound enhances liposome-mediated gene transfection. Ultrason Sonochem 2005; 12: 489–493.

    Article  CAS  Google Scholar 

  80. Howard CM, Forsberg F, Minimo C, Liu JB, Merton DA, Claudio PP . Ultrasound guided site specific gene delivery system using adenoviral vectors and commercial ultrasound contrast agents. J Cell Physiol 2006; 209: 413–421.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C M H Newman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newman, C., Bettinger, T. Gene therapy progress and prospects: Ultrasound for gene transfer. Gene Ther 14, 465–475 (2007). https://doi.org/10.1038/sj.gt.3302925

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302925

Keywords

This article is cited by

Search

Quick links