Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Gene transfer of SHIP-1 inhibits proliferation of juvenile myelomonocytic leukemia cells carrying KRAS2 or PTPN11 mutations

Abstract

Juvenile myelomonocytic leukemia (JMML) is a malignant disease of early childhood characterized by a hypersensitivity to granulocyte/macrophage colony-stimulating factor (GM-CSF). Mutations in RAS or PTPN11 are frequently detected in JMML patients. The SH2-containing inositol 5-phosphatase 1 (SHIP-1) is a negative regulator of GM-CSF signaling, and inactivation of SHIP-1 in mice results in a myeloproliferative disease. Here, we report the effects of SHIP-1 expression on GM-CSF-dependent proliferation and colony formation of human hematopoietic cells. After retroviral-mediated transduction of SHIP-1 into CD34+ cells from cord blood of healthy newborns or peripheral blood of JMML patients carrying mutations in KRAS2 or PTPN11, we observed a reduction in GM-CSF-dependent proliferation and colony formation. An enzymatically inactive form of SHIP-1 (D672A) had no effect. These data indicate that SHIP-1 can effectively block GM-CSF hypersensitivity in JMML progenitor cells with mutations in KRAS2 or PTPN11 and may be a useful approach for the treatment of JMML patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Liu L, Damen JE, Ware M, Hughes M, Krystal G . SHIP, a new player in cytokine-induced signalling. Leukemia 1997; 11: 181–184.

    Article  CAS  Google Scholar 

  2. Rohrschneider LR, Fuller JF, Wolf I, Liu Y, Lucas DM . Structure, function and biology of SHIP proteins. Genes Dev 2000; 14: 505–520.

    CAS  PubMed  Google Scholar 

  3. Helgason CD, Damen JE, Rosten P, Grewal R, Sorrensen P, Chappel SM et al. Targeted disruption of SHIP leads to hemapoietic perturbations, lung pathology, and a shortened life span. Genes Dev 1998; 12: 1610–1620.

    Article  CAS  Google Scholar 

  4. Liu Q, Sasaki T, Kozieradzki I, Wakeham A, Itie A, Dumont DJ et al. SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival. Genes Dev 1999; 13: 786–791.

    Article  CAS  Google Scholar 

  5. Luo JM, Liu ZL, Hao HL, Wang FX, Dong ZR, Ohno R . Mutation analysis of SHIP gene in acute leukemia. J Exp Hematol 2004; 12: 420–426.

    CAS  Google Scholar 

  6. Luo JM, Yoshida H, Komura S, Ohishi N, Pau L, Shigeno K et al. Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 2003; 17: 1–8.

    Article  CAS  Google Scholar 

  7. Horn S, Endl E, Fehse B, Weck MM, Mayr GW, Jucker M . Restoration of SHIP activity in a human leukemia cell line downregulates constitutively activated phosphatidylinositol 3-kinase/Akt/GSK3β signaling and leads to an increased transit time through the G1 phase of the cell cycle. Leukemia 2004; 18: 1839–1849.

    Article  CAS  Google Scholar 

  8. Emanuel PD, Bates LJ, Castleberry RP, Gualtieri RJ, Zuckerman KS . Selective hypersensitivity to granulocyte-macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood 1991; 77: 925–929.

    CAS  PubMed  Google Scholar 

  9. Lapidot T, Grunberger T, Vormoor J, Estrov Z, Kollet O, Bunin N et al. Identification of human juvenile chronic myelogenous leukemia stem cells capable of initiating the disease in primary and secondary SCID mice. Blood 1996; 88: 2655–2664.

    CAS  PubMed  Google Scholar 

  10. Freedman MH, Hitzler JK, Bunin N, Grunberger T, Squire J . Juvenile chronic myelogenous leukemia multilineage CD34+ cells: aberrant growth and differentiation properties. Stem cells 1996; 14: 690–701.

    Article  CAS  Google Scholar 

  11. Iversen PO, Lewis ID, Turczynowicz S, Hasle N, Niemeyer C, Schmiegelow K et al. Inhibition of granulocyte-macrophage colony-stimulating factor prevents dissemination and induces remission of juvenile myelomonocytic leukemia in engrafted immunodeficient mice. Blood 1997; 90: 4910–4917.

    CAS  PubMed  Google Scholar 

  12. Flotho C, Valcamonica S, Mach-Pascual S, Schmahl G, Corral L, Ritterbach J et al. Ras mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia 1999; 13: 32–37.

    Article  CAS  Google Scholar 

  13. Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003; 34: 148–150.

    Article  CAS  Google Scholar 

  14. Side L, Emanuel PD, Taylor B, Franklin J, Thompson P, Castleberry RP et al. Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia without clinical evidence of neurofibromatosis, type 1. Blood 1998; 92: 267–272.

    CAS  PubMed  Google Scholar 

  15. Locatelli F, Nöllke P, Zecca M, Korthof E, Lanino E, Peters C et al. Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG-MDS/EMBT trial. Blood 2005; 105: 410–419.

    Article  CAS  Google Scholar 

  16. Niemeyer CM, Fenu S, Hasle H, Mann G, Stary J, Van Wernig E . Differentiating juvenile myelomonocytic leukemia from infectious disease. Blood 1998; 91: 365–367.

    Google Scholar 

  17. Schwieger M, Löhler J, Friel J, Scheller M, Horak I, Stocking C . AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med 2002; 196: 1227–1240.

    Article  CAS  Google Scholar 

  18. Cosset F-L, Takeuchi Y, Battini J-L, Weiss RA, Collins MK . High titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 1995; 69: 7430–7436.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kratz CP, Niemeyer CM, Castleberry RP, Cetin M, Bergstrasser E, Emanuel PD et al. The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood 2005; 106: 2183–2185.

    Article  CAS  Google Scholar 

  20. Lord E . The use of the range in place of standard deviation in the t-test. Biometrika 1947; 34: 41–67.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The excellent technical assistance of W Wegner, M Engel and A Düsedau is gratefully acknowledged. We also thank G Nolan for the Phoenix-GP packaging cell line, C Baum for the retroviral vector pSF91-I-eGFP-PRE, D von Laer for a plasmid encoding the retroviral gag and pol proteins (pSVgp), F-L Cosset for a plasmid encoding a glykoprotein of the feline endogenous virus (RD114), W Fiedler for recombinant human GM-CSF and R Fischer for statistical analysis of the data. This work was supported by grants from the Deutsche-Forschungsgemeinschaft to M J and G W M (JU255/2-4 and JU255/2-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Jücker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzner, A., Horstmann, M., Fehse, B. et al. Gene transfer of SHIP-1 inhibits proliferation of juvenile myelomonocytic leukemia cells carrying KRAS2 or PTPN11 mutations. Gene Ther 14, 699–703 (2007). https://doi.org/10.1038/sj.gt.3302912

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302912

Keywords

This article is cited by

Search

Quick links