Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lens cell targetting for gene therapy of prevention of posterior capsule opacification

Abstract

Posterior capsule opacification is the main complication of cataract surgery. Using adenovirus-mediated gene transfer, we recently reported that it was feasible to prevent PCO by overexpressing pro-apoptotic molecules such as pro-caspase 3 or Bax in the residual lens epithelial cells post-cataract surgery. However, this approach is feasible only if gene transfer can be restricted to the residual cells responsible for PCO. Initially, we tested an adenovirus (human serotype 5, HAd5), a lentivirus (HIV) and an oncoretrovirus (MLV) vector for the their in vivo transduction efficiency of rabbit lens cells. We found that HAd5 vectors were the most efficient (>90% of the cells could be transduced). Six potential lens-specific promoters were then cloned into HAd5 vectors and assayed for their ability to target expression to a specific population of cells, using in vitro, ex vivo and in vivo rabbit tissues and human lens capsular bags. We found that the LEP503, MIP and Filensin promoters induced strong lens-specific expression of a reporter gene, in human lens cells. Following this ex vivo assay, we showed in a rabbit PCO model that gene transfer could be spatially restricted to the capsular bag by confining the vector with Matrigel. Our combined approach using a lens-specific promoter and a biocompatible gel should render feasible a novel therapeutic strategy for PCO that targets the remaining lens cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

CMV:

cytomegalovirus

β-Gal:

β-galactosidase

MOI:

multiplicity of infection (infectious particles/cell).

References

  1. Apple DJ, Solomon KD, Tetz MR, Assia EI, Holland EY, Legler UF et al. Posterior capsule opacification. Surv Ophthalmol 1992; 37: 73–116.

    Article  CAS  Google Scholar 

  2. Dewey S . Posterior capsule opacification. Curr Opin Ophthalmol 2006; 17: 45–53.

    Article  Google Scholar 

  3. De Groot V, Tassignon MJ, Vrensen GF . Effect of bag-in-the-lens implantation on posterior capsule opacification in human donor eyes and rabbit eyes. J Cataract Refract Surg 2005; 31: 398–405.

    Article  Google Scholar 

  4. Tassignon MJ, De Groot V, Van Tenten Y . Searching the way out for posterior capsule opacification. Verh K Acad Geneeskd Belg 2005; 67: 277–288.

    CAS  PubMed  Google Scholar 

  5. Nishi O . Posterior capsule opacification. Part 1: Experimental investigations. J Cataract Refract Surg 1999; 25: 106–117.

    Article  CAS  Google Scholar 

  6. Couderc BC, de Neuville S, Douin-Echinard V, Serres B, Manenti S, Darbon JM et al. Retrovirus-mediated transfer of a suicide gene into lens epithelial cells in vitro and in an experimental model of posterior capsule opacification. Curr Eye Res 1999; 19: 472–482.

    Article  CAS  Google Scholar 

  7. Malecaze F, Couderc B, de Neuville S, Serres B, Mallet J, Douin-Echinard V et al. Adenovirus-mediated suicide gene transduction: feasibility in lens epithelium and in prevention of posterior capsule opacification in rabbits. Hum Gene Ther 1999; 10: 2365–2372.

    Article  CAS  Google Scholar 

  8. Malecaze F, Decha A, Serre B, Penary M, Duboue M, Berg D et al. Prevention of posterior capsule opacification by the induction of therapeutic apoptosis of residual lens cells. Gene Therapy 2006; 13: 440–448.

    Article  CAS  Google Scholar 

  9. Nakamura T, Williams-Simons L, Westphal H . A human papillomavirus type 18 E6/E7 transgene sensitizes mouse lens cells to human wild-type p53-mediated apoptosis. Oncogene 1997; 14: 2991–2998.

    Article  CAS  Google Scholar 

  10. Hagan III JC . Preventing intraoperative ocular damage. J Cataract Refract Surg 1999; 25: 1177.

    Article  Google Scholar 

  11. Chepelinsky AB, Sommer B, Piatigorsky J . Interaction between two different regulatory elements activates the murine alpha A-crystallin gene promoter in explanted lens epithelia. Mol Cell Biol 1987; 7: 1807–1814.

    Article  CAS  Google Scholar 

  12. Chepelinsky AB, Khillan JS, Mahon KA, Overbeek PA, Westphal H, Piatigorsky J . Crystallin genes: lens specificity of the murine alpha A-crystallin gene. Environ Health Perspect 1987; 75: 17–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sax CM, Cvekl A, Piatigorsky J . Transcriptional regulation of the mouse alpha A-crystallin gene: binding of USF to the -7/+5 region. Gene 1997; 185: 209–216.

    Article  CAS  Google Scholar 

  14. Klok EJ, van Genesen ST, Civil A, Schoenmakers JG, Lubsen NH . Regulation of expression within a gene family. The case of the rat gammaB- and gammaD-crystallin promoters. J Biol Chem 1998; 273: 17206–17215.

    Article  CAS  Google Scholar 

  15. Heon E, Priston M, Schorderet DF, Billingsley GD, Girard PO, Lubsen N et al. The gamma-crystallins and human cataracts: a puzzle made clearer. Am J Hum Genet 1999; 65: 1261–1267.

    Article  CAS  Google Scholar 

  16. Golestaneh N, Fan J, Fariss RN, Lo WK, Zelenka PS, Chepelinsky AB . Lens major intrinsic protein (MIP)/aquaporin 0 expression in rat lens epithelia explants requires fibroblast growth factor-induced ERK and JNK signaling. J Biol Chem 2004; 279: 31813–31822.

    Article  CAS  Google Scholar 

  17. Kim S, Ge H, Ohtaka-Maruyama C, Chepelinsky AB . The transcription factor Sp3 interacts with promoter elements of the lens specific MIP gene. Mol Vis 1999; 5: 12.

    CAS  PubMed  Google Scholar 

  18. Wang XY, Ohtaka-Maruyama C, Pisano MM, Jaworski CJ, Chepelinsky AB . Isolation and characterization of the 5′-flanking sequence of the human ocular lens MIP gene. Gene 1995; 167: 321–325.

    Article  CAS  Google Scholar 

  19. Wen Y, Sachs G, Athmann C . A novel lens epithelium gene, LEP503, is highly conserved in different vertebrate species and is developmentally regulated in postnatal rat lens. Exp Eye Res 2000; 70: 159–168.

    Article  CAS  Google Scholar 

  20. Wen Y, Ibaraki N, Reddy VN, Sachs G . Functional analysis of the promoter and chromosomal localization for human LEP503, a novel lens epithelium gene. Gene 2001; 269: 61–71.

    Article  CAS  Google Scholar 

  21. Lim JM, Cho KH . Prediction of gene expression levels and the role of cis-acting elements in age-related cataract by applying a promoter-based modeling approach. Biotechnol Prog 2005; 21: 1032–1037.

    Article  CAS  Google Scholar 

  22. DePianto DJ, Blankenship TN, Hess JF, FitzGerald PG . Analysis of non-crystallin lens fiber cell gene expression in c-Maf −/− mice. Mol Vis 2003; 9: 288–294.

    CAS  PubMed  Google Scholar 

  23. Masaki S, Yonezawa S, Quinlan R . Localization of two conserved cis -acting enhancer regions for the filensin gene promoter that direct lens-specific expression. Exp Eye Res 2002; 75: 295–305.

    Article  CAS  Google Scholar 

  24. Krag S, Andreassen TT . Mechanical properties of the human lens capsule. Prog Retin Eye Res 2003; 22: 749–767.

    Article  Google Scholar 

  25. Krag S, Andreassen TT . Mechanical properties of the human posterior lens capsule. Invest Ophthalmol Vis Sci 2003; 44: 691–696.

    Article  Google Scholar 

  26. Morgenbesser SD, Williams BO, Jacks T, DePinho RA . p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 1994; 371: 72–74.

    Article  CAS  Google Scholar 

  27. Horwitz J, Bova MP, Ding LL, Haley DA, Stewart PL . Lens alpha-crystallin: function and structure. Eye 1999; 13 (Part 3b): 403–408.

    Article  Google Scholar 

  28. Ilagan JG, Cvekl A, Kantorow M, Piatigorsky J, Sax CM . Regulation of alphaA-crystallin gene expression. Lens specificity achieved through the differential placement of similar transcriptional control elements in mouse and chicken. J Biol Chem 1999; 274: 19973–19978.

    Article  CAS  Google Scholar 

  29. Overbeek PA, Chepelinsky AB, Khillan JS, Piatigorsky J, Westphal H . Lens-specific expression and developmental regulation of the bacterial chloramphenicol acetyltransferase gene driven by the murine alpha A-crystallin promoter in transgenic mice. Proc Natl Acad Sci USA 1985; 82: 7815–7819.

    Article  CAS  Google Scholar 

  30. Chen Q, Ash JD, Branton P, Fromm L, Overbeek PA . Inhibition of crystallin expression and induction of apoptosis by lens-specific E1A expression in transgenic mice. Oncogene 2002; 21: 1028–1037.

    Article  CAS  Google Scholar 

  31. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156–159.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Alain Regan and Jerome Bernaud from the animal facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Couderc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malecaze, F., Lubsen, N., Serre, B. et al. Lens cell targetting for gene therapy of prevention of posterior capsule opacification. Gene Ther 13, 1422–1429 (2006). https://doi.org/10.1038/sj.gt.3302790

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302790

Keywords

This article is cited by

Search

Quick links