Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncolysis of pancreatic tumour cells by a γ34.5-deleted HSV-1 does not rely upon Ras-activation, but on the PI 3-kinase pathway

Abstract

The ability of viruses to selectively target, replicate within, and destroy tumour cells without deleterious effects in normal cells (oncolysis), makes the use of viruses as an attractive tool for cancer treatment. Pancreatic adenocarcinoma, being insensitive to traditional therapy and having a rather poor prognosis, represents a suitable target to evaluate viral oncolysis as a novel therapeutic approach. Herpes simplex virus (HSV) has been reported to produce an oncolytic effect in cells overexpressing Ras. As Ras signalling is frequently aberrant in pancreatic cancer, we compared four pancreatic cell lines (which differ in the presence of mutated or wild-type ras) for their ability to support growth of γ34.5-replication attenuated HSV-1 (R3616). Our data show that permissiveness to viral replication is neither associated with enhanced Ras signalling nor with defective PKR activity. By contrast, we provide evidence that disregulation of the PI 3-kinase signalling pathway allows conditionally replication-defective R3616 virus to overcome the cellular antiviral activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Yoshida T, Ohnami S, Aoki K . Development of gene therapy to target pancreatic cancer. Cancer Sci 2004; 95: 283–289.

    Article  CAS  PubMed  Google Scholar 

  2. Hecht JR, Bedford R, Abbruzzese JL, Lahoti S, Reid TR, Soetikno RM et al. A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res 2003; 9: 555–561.

    CAS  PubMed  Google Scholar 

  3. Liu TC, Kirn D . Viruses with deletions in antiapoptotic genes as potential oncolytic agents. Oncogene 2005; 24: 6069–6079.

    Article  CAS  PubMed  Google Scholar 

  4. Clemens MJ, Elia A . The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res 1997; 17: 503–524.

    Article  CAS  PubMed  Google Scholar 

  5. Whitley RJ . Herpes simplex viruses. In: Knipe DM, Howley PM (eds). Fields Virology. Lippincott: Williams & Wilkins, Philadelphia, 2001, pp 2461–2509.

    Google Scholar 

  6. He B, Gross M, Roizman B . The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1 alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 1997; 94: 843–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kirn DH . Replicating oncolytic viruses: an overview. Expert Opin Investig Drugs 1996; 5: 753–762.

    Article  CAS  Google Scholar 

  8. Mundschau LJ, Faller DV . Endogenous inhibitors of the dsRNA-dependent eIF-2 alpha protein kinase PKR in normal and ras-transformed cells. Biochimie 1994; 76: 792–800.

    Article  CAS  PubMed  Google Scholar 

  9. Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, Lemoine NR et al. Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch 2001; 439: 798–802.

    Article  CAS  PubMed  Google Scholar 

  10. Coffey MC, Strong JE, Forsyth PA, Lee PW . Reovirus therapy of tumours with activated Ras pathway. Science 1998; 282: 1332–1334.

    Article  CAS  PubMed  Google Scholar 

  11. Farassati F, Yang AD, Lee PW . Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat Cell Biol 2001; 3: 745–750.

    Article  CAS  PubMed  Google Scholar 

  12. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M . Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988; 53: 549–554.

    Article  CAS  PubMed  Google Scholar 

  13. Berrozpe G, Schaeffer J, Peinado MA, Real FX, Perucho M . Comparative analysis of mutations in p53 and K-ras genes in pancreatic cancer. Int J Cancer 1994; 58: 185–191.

    Article  CAS  PubMed  Google Scholar 

  14. Brtva TR, Drugan JK, Ghosh S, Terrell RS, Campbell-Burk S, Bell RM et al. Two distinct Raf domains mediate interaction with Ras. J Biol Chem 1995; 270: 9809–9812.

    Article  CAS  PubMed  Google Scholar 

  15. Singh LP, Arorr AR, Wahba AJ . Phosphorylation of the guanine nucleotide exchange factor and eukaryotic initiation factor 2 by casein kinase II regulates guanine nucleotide binding and GDP/GTP exchange. Biochemistry 1994; 33: 9152–9157.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang X, Lin M, van Golen KL, Yoshioka K, Itoh K, Yee D . Multiple signaling pathways are activated during insulin-like growth factor-I (IGF-I) stimulated breast cancer cell migration. Breast Cancer Res Treat 2005; 93: 159–168.

    Article  CAS  PubMed  Google Scholar 

  17. Kleijn M, Scheper GC, Voorma HO, Thomas AA . Regulation of translation initiation factors by signal transduction. Eur J Biochem 1998; 253: 531–544.

    Article  CAS  PubMed  Google Scholar 

  18. Martin KA, Blenis J . Coordinate regulation of translation by the PI 3-kinase and mTOR pathways. Adv Cancer Res 2002; 86: 1–39.

    Article  CAS  PubMed  Google Scholar 

  19. Vlahos CJ, Matter WF, Hui KY, Brown RF . A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 1994; 269: 5241–5248.

    CAS  PubMed  Google Scholar 

  20. Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N . Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 1996; 15: 658–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR . A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 1995; 92: 7686–7689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coukos G, Rubin SC, Molnar-Kimber KL . Application of recombinant herpes simplex virus-1 (HSV-1) for the treatment of malignancies outside the central nervous system. Gene Ther Mol Biol 1999; 3: 78–89.

    Google Scholar 

  23. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM . Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991; 252: 854–856.

    Article  CAS  PubMed  Google Scholar 

  24. Ellis CA, Clark G . The importance of being K-Ras. Cell Signal 2000; 12: 425–434.

    Article  CAS  PubMed  Google Scholar 

  25. Clemens MJ, Bommer UA . Translational control: the cancer connection. Int J Biochem Cell Biol 1999; 31: 1–23.

    Article  CAS  PubMed  Google Scholar 

  26. Hinnebusch AG . Mechanism and regulation of initiator methionyl-tRNA binding to ribosomes. In: Sonenberg N, Hershey JWB, Mathews MB (eds). Translational Control of Gene Expression. Cold Spring Harbor Press: Cold Spring Harbor, New York, 2000, pp 185–243.

    Google Scholar 

  27. Webb BL, Proud CG . Eukaryotic initiation factor 2B (eIF2B). Int J Biochem Cell Biol 1997; 29: 1127–1131.

    Article  CAS  PubMed  Google Scholar 

  28. Gingras AC, Raught B, Sonenberg N . eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 1999; 68: 913–963.

    Article  CAS  PubMed  Google Scholar 

  29. Kimball SR, Fabian JR, Pavitt GD, Hinnebusch AG, Jefferson LS . Regulation of guanine nucleotide exchange through phosphorylation of eukaryotic initiation factor eIF2alpha. Role of the alpha- and delta-subunits of eIF2B. J Biol Chem 1998; 273: 12841–12845.

    Article  CAS  PubMed  Google Scholar 

  30. Pap M, Cooper GM . Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 1998; 273: 19929–19932.

    Article  CAS  PubMed  Google Scholar 

  31. Welsh GI, Miller CM, Loughlin AJ, Price NT, Proud CG . Regulation of eukaryotic initiation factor eIF2B: glycogen synthase kinase-3 phosphorylates a conserved serine which undergoes dephosphorylation in response to insulin. FEBS Lett 1998; 421: 125–130.

    Article  CAS  PubMed  Google Scholar 

  32. Mineta T, Rabkin S, Yazaki T, Hunter W, Martuza R . Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1995; 1: 938–943.

    Article  CAS  PubMed  Google Scholar 

  33. Mineta T, Rabkin S, Martuza R . Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant. Cancer Res 1994; 54: 3963–3966.

    CAS  PubMed  Google Scholar 

  34. Harland J, Dunn P, Cameron E, Conner J, Brown SM . The herpes simplex virus (HSV) protein ICP34.5 is a virion component that forms a DNA-binding complex with proliferating cell nuclear antigen and HSV replication proteins. J Neurovirol 2003; 9: 477–488.

    Article  CAS  PubMed  Google Scholar 

  35. Chou J, Kern ER, Whitley RJ, Roizman B . Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 1990; 250: 1262–1266.

    Article  CAS  PubMed  Google Scholar 

  36. Killington RA, Powell KL . Growth, assay and purification of herpes viruses. In: BWJ Mahy (ed). Virology: A Practical Approach. IRL Press: Oxford, Washington DC, 1985, pp 207–236.

    Google Scholar 

Download references

Acknowledgements

This work was supported by AIDS grants from the Istituto Superiore di Sanità (Rome-AIDS Projects no. 40F-57 to GP and 30F.39 to CP), the Fondazione Cassa di Risparmio di Padova e Rovigo, Regione Veneto, MIUR, FIRB and AIRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Palù.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarinella, F., Calistri, A., Sette, P. et al. Oncolysis of pancreatic tumour cells by a γ34.5-deleted HSV-1 does not rely upon Ras-activation, but on the PI 3-kinase pathway. Gene Ther 13, 1080–1087 (2006). https://doi.org/10.1038/sj.gt.3302770

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302770

Keywords

This article is cited by

Search

Quick links