Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Co-transplantation of bone marrow stromal cells transduced with IL-7 gene enhances immune reconstitution after allogeneic bone marrow transplantation in mice

Abstract

Allogeneic bone marrow transplantation (allo-BMT) is followed by a period of profound immune deficiency, which results in significant susceptibility to infections and limits the extensive application of this approach in clinic. Here, we transduced human interleukin-7 (IL-7) gene into donor-derived bone marrow stromal cells (MSCs) using adenovirus vector, and transplanted this gene-engineered MSCs (MSC-IL-7) into lethally irradiated C57BL/6 mice to investigate their effects on immune reconstitution following allo-BMT. Recipient mice receiving MSC-IL-7 cells plus T-cell-depleted bone marrow cells of BALB/c mice showed a significant increase in thymopoiesis and homeostatic expansion of peripheral T lymphocytes. Furthermore, injection of MSC-IL-7 cells following allo-BMT protected the host from the lethality caused by acute graft-versus-host disease (GVHD) and prevented the occurrence of GVHD induced by transplanted T cells. Thus, the use of MSC-IL-7 cells may be therapeutically useful for enhancing immune reconstitution without aggravating GVHD in allo-BMT mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Socie G, Stone JV, Wingard JR, Weisdorf D, Henslee-Downey PJ, Bredeson C et al. Long-term survival and late deaths after allogeneic bone marrow transplantation. N Engl J Med 1999; 341: 14–21.

    Article  CAS  PubMed  Google Scholar 

  2. Dulude G, Brochu S, Fontaine P, Baron C, Gyger M, Roy DC et al. Thymic and extrathymic differentiation and expansion of T lymphocytes following bone marrow transplantation in irradiated recipients. Exp Hematol 1997; 25: 992–1004.

    CAS  PubMed  Google Scholar 

  3. Dumont-Girard F, Roux E, van Lier RA, Hale G, Helg C, Chapuis B et al. Reconstitution of the T-cell compartment after bone marrow transplantation; restoration of the repertoire by thymic emigrants. Blood 1998; 92: 4464–4471.

    CAS  PubMed  Google Scholar 

  4. Machall CL, Bare CV, Granger LA, Sharrow SO, Titus JA, Gress RE . Thymic-independent T cell regeneration occurs via antigen-driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing. J Immunol 1996; 156: 4606–4616.

    Google Scholar 

  5. Weinberg K, Annett G, Kashyap A, Lenarsky C, Forman SJ, Parkman R . The effect of thymic function on immuncompetence following bone marrow transplantation. Blood Bone Marrow Transplant 1995; 1: 18–23.

    CAS  Google Scholar 

  6. Small TN, Papadopoulos EB, Boulad F, Black P, Castro-Malaspina H, Childs BH et al. Comparison of immune reconstitution after unrelated and related T-cell-depleted bone marrow transplantation: effect of patient age and donor leukocyte infusion. Blood 1999; 93: 467–480.

    CAS  PubMed  Google Scholar 

  7. Fry TJ, Mackall CL . Interleukin-7: from bench to clinic. Blood 2002; 99: 3892–3904.

    Article  CAS  PubMed  Google Scholar 

  8. Peschon JJ, Morrissey PJ, Grabstein KH, Ramsdell FJ, Maraskovsky E, Gliniak BC et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 1994; 180: 1955–1960.

    Article  CAS  PubMed  Google Scholar 

  9. Von Freeden-Jeffry U, Vieira P, Lucian LA, Mc-Neill T, Burdach SE, Murray R . Lymphopenia in interleukin (IL-7)-gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 1995; 181: 1519–1526.

    Article  CAS  PubMed  Google Scholar 

  10. Peul A, Ziegler SF, Buckley RH, Leonard WJ . Defective IL-7 R expression in T(−)B(+)NK(+) severe combined immunodeficiency. Nat Genet 1998; 20: 394–397.

    Article  Google Scholar 

  11. Bolotin E, Smith S, Smogorzewska EM, Widmer M, Weinberg KI . Enhancement of thymopoiesis after bone marrow transplant by in vivo IL-7. Blood 1996; 88: 1887–1894.

    CAS  PubMed  Google Scholar 

  12. Broers AE, Posthumus-van sluijs SJ, Spits H, van der Holt B, Lowenberg B, Braakman E et al. Interleukin-7 improves T-cell recovery after experimental T-cell-depleted bone marrow transplantation in T-cell-deficient mice by strong expansion of recent thymic emigrants. Blood 2003; 102: 1534–1540.

    Article  CAS  PubMed  Google Scholar 

  13. Mackall CL, Fry TJ, Bare C, Morgan P, Galbraith A, Gress RE . IL-7 increases both thymic-dependent and thymic-independent pathways after bone marrow transplantation. Blood 2001; 97: 1491–1497.

    Article  CAS  PubMed  Google Scholar 

  14. Dudley ME . Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298: 850–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tavassoli M, Friedenstein A . Hemopoietic stromal micro-environment. Am J Hematol 1983; 15: 195–203.

    Article  CAS  PubMed  Google Scholar 

  16. Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R . Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 2003; 102: 2999–3001.

    Article  Google Scholar 

  17. Almeida-Porada G, Porada CD, Tran N, Zanjani ED . Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood 2000; 95: 3620–3627.

    CAS  PubMed  Google Scholar 

  18. El-Badri NS, Wang BY, Cherry, Good RA . Osteoblasts promote engraftment of allogeneic hematopoietic stem cells. Exp Hematol 1998; 26: 110–116.

    CAS  PubMed  Google Scholar 

  19. Phinney DG, Kopen G, Isaacson RL, Prockop DJ . Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biol 1999; 72: 570–585.

    CAS  Google Scholar 

  20. Li KJ, Dilber MS, Abedi MR, Bjorkstrand B, Smith CI, Garoff H et al. Retroviral-mediated gene transfer into human bone marrow stromal cells; studies of efficiency and in vivo survival in SCID mice. Eur J Haematol 1995; 55: 302–306.

    Article  CAS  PubMed  Google Scholar 

  21. Chung B, Barbara-Burnhm L, Barsky L, Weinberg K . Radiosensitivity of thymic interleukin-7 production and thymopoiesis after bone marrow transplantation. Blood 2001; 98: 1601–1606.

    Article  CAS  PubMed  Google Scholar 

  22. Douek DC, Vesico RA, Betts MR, Brenchley JM, Hill BJ, Zhang L et al. Assessment of thymic output in adults after haematopoietic stem cell transplantation and prediction of T-cell reconstitution. Lancet 2000; 355: 1875–1881.

    Article  CAS  PubMed  Google Scholar 

  23. Fry TJ, Christensen BL, Komschlies KL, Gress RE, Mackall CL . Interleukin-7 restores immunity in athymic T-cell-depleted hosts. Blood 2001; 97: 1525–1533.

    Article  CAS  PubMed  Google Scholar 

  24. Sinha ML, Fry TJ, Fowler DH, Miller G, Mackall CL . Interleukin 7 worsens graft-versus-host disease. Blood 2002; 100: 2642–2649.

    Article  CAS  PubMed  Google Scholar 

  25. Ferrara JL, Levy R, Chao NJ . Pathophysiologic mechanisms of acute graft-vs-host disease. Biol Blood Marrow Transplant 1999; 5: 347–356.

    Article  CAS  PubMed  Google Scholar 

  26. Dautigny N, Le Campion A, Lucas B . Timing and casting for actors of thymic negative selection. J Immunol 1999; 162: 1294–1302.

    CAS  PubMed  Google Scholar 

  27. Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P . A direct estimate of the human αβ T cel receptor diversity. Science 1999; 286: 958–961.

    Article  CAS  PubMed  Google Scholar 

  28. Chu YW, Memon SA, Sharrow SO, Hakim FT, Eckhaus M, Lucas PJ et al. Exogenous IL-7 increase recent thymic emigrants in peripheral lymphoid tissue without enhanced thymic function. Blood 2004; 104: 1110–1119.

    Article  CAS  PubMed  Google Scholar 

  29. Ishida T, Inaba M, Hisha H, Sugiura K, Adachi Y, Nagata N et al. Requirement of donor-derived stromal cells in the bone marrow for successful allogeneic bone marrow transplantation. J Immunol 1994; 152: 3119–3127.

    CAS  PubMed  Google Scholar 

  30. Li Y, Hisha H, Inaba M, Lian Z, Yu C, Kawamura M et al. Evidence for migration of donor bone marrow stromal cells into recipient thymus after bone marrow transplantation plus bone grafts; a role of stromal cells in positive selection. Exp Hematol 2000; 28: 950–960.

    Article  CAS  PubMed  Google Scholar 

  31. Parkman R, Weinberg KI . Immunological reconstitution following hematopoietic stem cell transplantation. In: Thomas ED, Blume KG, Forman SJ (Eds). Science. Blackwell: Malden, USA, 1999, pp. 704–711.

    Google Scholar 

  32. Storek J, Dawson MA, Storer B, Stevens-Ayers T, Maloney DG, Marr KA et al. Immune reconstitution after allogeneic marrow transplantation compared with blood stem cell transplantation. Blood 2001; 97: 3380–3389.

    Article  CAS  PubMed  Google Scholar 

  33. Pereira RF, O'Hara MD, Laptev AV, Halford KW, Pollard MD, Class R et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA 1998; 95: 1142–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deans RJ, Moseley AB . Mesenchymal stem cells: biology and potential clinical use. Exp Hematol 2000; 28: 875–884.

    Article  CAS  PubMed  Google Scholar 

  35. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838–3843.

    Article  CAS  PubMed  Google Scholar 

  36. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 72: 1653–1655.

    Google Scholar 

  37. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439–1441.

    Article  PubMed  Google Scholar 

  38. Aldogan O, Schmaltz C, Muriglan SJ, Kappel BJ, Perales MA, Rotolo JA et al. Administration of interleukin-7 after allogeneic bone marrow transplantation improves immune reconstitution without aggravating graft-versus-host disease. Blood 2001; 98: 2256–2265.

    Article  Google Scholar 

  39. Tropel P, Noel D, Platet N, Legrand P, Benabid AL, Berger F . Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res 2004; 295: 395–406.

    Article  CAS  PubMed  Google Scholar 

  40. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Johnson CW, Williams WC, Copeland CB, Devito MJ, Smialowicz RJ . Sensitivity of the SRBC PFC assay versus ELISA for detection of immunosuppression by TCDD and TCDD-like congeners. Toxicology 2000; 56: 1–11.

    Article  Google Scholar 

  42. Broers AE, Meijerink JP, van Dongen JJ, Posthumus SJ, Lowenberg B, Braakman E et al. Quantification of newly developed T-cells in mice by real-time quantitative PCR of T-cell receptor rearrangement excision circles. Exp Hematol 2002; 30: 745–750.

    Article  CAS  PubMed  Google Scholar 

  43. Fry TJ, Christensen BL, Komschlies KL, Gress RE, Mackall CL . Interleukin-7 restores immunity in athymic T-cell-depleted hosts. Blood 2002; 97: 1525–1533.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (30170895) from the National Science Foundation of China. We thank Drs Qihang Li and Tong-chuan He for their gifts. We also thank Dr Jieliang Wang and Dr Lin Liu for their expert technical assistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, A., Zhang, Q., Jiang, J. et al. Co-transplantation of bone marrow stromal cells transduced with IL-7 gene enhances immune reconstitution after allogeneic bone marrow transplantation in mice. Gene Ther 13, 1178–1187 (2006). https://doi.org/10.1038/sj.gt.3302741

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302741

Keywords

This article is cited by

Search

Quick links