Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Infectivity enhancement for adenoviral transduction of canine osteosarcoma cells

Abstract

The full realization of conditionally replicative adenoviruses (CRAds) for cancer therapy has been hampered by the limited knowledge of CRAd function in vivo and particularly in an immunocompetent host. To address this issue, we previously proposed a canine adenovirus type 2 (CAV2)-based CRAd for clinical evaluation in canine patients with osteosarcoma (OS). In this study, we evaluated infectivity-enhancement strategies to establish the foundation for designing a potent CAV2 CRAd with effective transduction capacity in dog osteosarcoma cells. The results indicate that the native CAV2 fiber–knob can mediate increased binding, and consequently gene transfer, in both canine osteosarcoma immortalized and primary cell lines relative to previously reported Ad5 infectivity-enhancement strategies. Gene delivery was further enhanced by incorporating a polylysine polypeptide onto the carboxy terminus of the CAV2 knob. This vector demonstrated improved gene delivery in osteosarcoma xenograft tumors. These data provide the rationale for generation of infectivity-enhanced syngeneic CAV2 CRAds for clinical evaluation in a dog osteosarcoma model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 6
Figure 5
Figure 7

Similar content being viewed by others

References

  1. Alemany R, Balague C, Curiel DT . Replicative adenoviruses for cancer therapy. Nat Biotechnol 2000; 18: 723–727.

    Article  CAS  PubMed  Google Scholar 

  2. Curiel DT . The development of conditionally replicative adenoviruses for cancer therapy. Clin Cancer Res 2000; 6: 3395–3399.

    CAS  PubMed  Google Scholar 

  3. Reid T, Warren R, Kirn D . Intravascular adenoviral agents in cancer patients: lessons from clinical trials. Cancer Gene Ther 2002; 9: 979–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hemminki A, Alvarez RD . Adenoviruses in oncology: a viable option? BioDrugs 2002; 16: 77–87.

    Article  PubMed  Google Scholar 

  5. Kruyt FA, Curiel DT . Toward a new generation of conditionally replicating adenoviruses: pairing tumor selectivity with maximal oncolysis. Hum Gene Ther 2002; 13: 485–495.

    Article  CAS  PubMed  Google Scholar 

  6. Wildner O, Morris JC . Subcutaneous administration of a replication-competent adenovirus expressing HSV-tk to cotton rats: dissemination, persistence, shedding, and pathogenicity. Hum Gene Ther 2002; 13: 101–112.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Hallden G, Hill R, Anand A, Liu TC, Francis J et al. E3 gene manipulations affect oncolytic adenovirus activity in immunocompetent tumor models. Nat Biotechnol 2003; 21: 1328–1335.

    Article  CAS  PubMed  Google Scholar 

  8. Ganly I, Mautner V, Balmain A . Productive replication of human adenoviruses in mouse epidermal cells. J Virol 2000; 74: 2895–2899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hallden G, Hill R, Wang Y, Anand A, Liu TC, Lemoine NR et al. Novel immunocompetent murine tumor models for the assessment of replication-competent oncolytic adenovirus efficacy. Mol Ther 2003; 8: 412–424.

    Article  CAS  PubMed  Google Scholar 

  10. Withrow SJ, Powers BE, Straw RC, Wilkins RM . Comparative aspects of osteosarcoma. Dog versus man. Clin Orthop 1991; 270: 159–168.

    Google Scholar 

  11. Vail DM, MacEwen EG . Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest 2000; 18: 781–792.

    Article  CAS  PubMed  Google Scholar 

  12. Douglas JT, Kim M, Sumerel LA, Carey DE, Curiel DT . Efficient oncolysis by a replicating adenovirus (ad) in vivo is critically dependent on tumor expression of primary ad receptors. Cancer Res 2001; 61: 813–817.

    CAS  PubMed  Google Scholar 

  13. Wickham TJ . Ligand-directed targeting of genes to the site of disease. Nat Med 2003; 9: 135–139.

    Article  CAS  PubMed  Google Scholar 

  14. Anders M, Hansen R, Ding RX, Rauen KA, Bissell MJ, Korn WM . Disruption of 3D tissue integrity facilitates adenovirus infection by deregulating the coxsackievirus and adenovirus receptor. Proc Natl Acad Sci USA 2003; 100: 1943–1948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anders M, Christian C, McMahon M, McCormick F, Korn WM . Inhibition of the Raf/MEK/ERK pathway up-regulates expression of the coxsackievirus and adenovirus receptor in cancer cells. Cancer Res 2003; 63: 2088–2095.

    CAS  PubMed  Google Scholar 

  16. Wickham TJ, Carrion ME, Kovesdi I . Targeting of adenovirus penton base to new receptors through replacement of its RGD motif with other receptor-specific peptide motifs. Gene Therapy 1995; 2: 750–756.

    CAS  PubMed  Google Scholar 

  17. Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998; 72: 9706–9713.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu H, Seki T, Dmitriev I, Uil T, Kashentseva E, Han T et al. Double modification of adenovirus fiber with RGD and polylysine motifs improves coxsackievirus-adenovirus receptor-independent gene transfer efficiency. Hum Gene Ther 2002; 13: 1647–1653.

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki K, Fueyo J, Krasnykh V, Reynolds PN, Curiel DT, Alemany R . A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res 2001; 7: 120–126.

    CAS  PubMed  Google Scholar 

  20. Davydova J, Le LP, Gavrikova T, Wang M, Krasnykh V, Yamamoto M . Infectivity-enhanced cyclooxygenase-2-based conditionally replicative adenoviruses for esophageal adenocarcinoma treatment. Cancer Res 2004; 64: 4319–4327.

    Article  CAS  PubMed  Google Scholar 

  21. Krasnykh VN, Mikheeva GV, Douglas JT, Curiel DT . Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. J Virol 1996; 70: 6839–6846.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G, Lieber A . Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. J Virol 2000; 74: 2567–2583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Glasgow JN, Kremer EJ, Hemminki A, Siegal GP, Douglas JT, Curiel DT . An adenovirus vector with a chimeric fiber derived from canine adenovirus type 2 displays novel tropism. Virology 2004; 324: 103–116.

    Article  CAS  PubMed  Google Scholar 

  24. Dmitriev IP, Kashentseva EA, Curiel DT . Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol 2002; 76: 6893–6899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Belousova N, Korokhov N, Krendelshchikova V, Simonenko V, Mikheeva G, Triozzi PL et al. Genetically targeted adenovirus vector directed to CD40-expressing cells. J Virol 2003; 77: 11367–11377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Korokhov N, Mikheeva G, Krendelshchikov A, Belousova N, Simonenko V, Krendelshchikova V et al. Targeting of adenovirus via genetic modification of the viral capsid combined with a protein bridge. J Virol 2003; 77: 12931–12940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hemminki A, Kanerva A, Kremer EJ, Bauerschmitz GJ, Smith BF, Liu B et al. A canine conditionally replicating adenovirus for evaluating oncolytic virotherapy in a syngeneic animal model. Mol Ther 2003; 7: 163–173.

    Article  CAS  PubMed  Google Scholar 

  28. Henry LJ, Xia D, Wilke ME, Deisenhofer J, Gerard RD . Characterization of the knob domain of the adenovirus type 5 fiber protein expressed in Escherichia coli. J Virol 1994; 68: 5239–5246.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  30. Soudais C, Boutin S, Hong SS, Chillon M, Danos O, Bergelson JM et al. Canine adenovirus type 2 attachment and internalization: coxsackievirus-adenovirus receptor, alternative receptors, and an RGD-independent pathway. J Virol 2000; 74: 10639–10649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Le LP, Everts M, Dmitriev I, Davydova J, Yamamoto M, Curiel DT . Fluorescently labeled adenovirus with pIX-EGFP for vector detection. Mol Imaging 2004; 3: 105–116.

    Article  CAS  PubMed  Google Scholar 

  32. Kremer EJ, Boutin S, Chillon M, Danos O . Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J Virol 2000; 74: 505–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Witlox MA, Van Beusechem VW, Grill J, Haisma HJ, Schaap G, Bras J et al. Epidermal growth factor receptor targeting enhances adenoviral vector based suicide gene therapy of osteosarcoma. J Gene Med 2002; 4: 510–516.

    Article  CAS  PubMed  Google Scholar 

  34. Kawashima H, Ogose A, Yoshizawa T, Kuwano R, Hotta Y, Hotta T et al. Expression of the coxsackievirus and adenovirus receptor in musculoskeletal tumors and mesenchymal tissues: efficacy of adenoviral gene therapy for osteosarcoma. Cancer Sci 2003; 94: 70–75.

    Article  CAS  PubMed  Google Scholar 

  35. Gu W, Ogose A, Kawashima H, Ito M, Ito T, Matsuba A et al. High-level expression of the coxsackievirus and adenovirus receptor messenger RNA in osteosarcoma, Ewing's sarcoma, and benign neurogenic tumors among musculoskeletal tumors. Clin Cancer Res 2004; 10: 3831–3838.

    Article  CAS  PubMed  Google Scholar 

  36. Short JJ, Pereboev AV, Kawakami Y, Vasu C, Holterman MJ, Curiel DT . Adenovirus serotype 3 utilizes CD80 (B7.1) and CD86 (B7.2) as cellular attachment receptors. Virology 2004; 322: 349–359.

    Article  CAS  PubMed  Google Scholar 

  37. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309–319.

    Article  CAS  PubMed  Google Scholar 

  38. Bai M, Harfe B, Freimuth P . Mutations that alter an Arg-Gly-Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell-rounding activity and delay virus reproduction in flat cells. J Virol 1993; 67: 5198–5205.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Greber UF, Willetts M, Webster P, Helenius A . Stepwise dismantling of adenovirus 2 during entry into cells. Cell 1993; 75: 477–486.

    Article  CAS  PubMed  Google Scholar 

  40. Seth P . Adenovirus-dependent release of choline from plasma membrane vesicles at an acidic pH is mediated by the penton base protein. J Virol 1994; 68: 1204–1206.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Greber UF, Webster P, Weber J, Helenius A . The role of the adenovirus protease on virus entry into cells. EMBO J 1996; 15: 1766–1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leopold PL, Ferris B, Grinberg I, Worgall S, Hackett NR, Crystal RG . Fluorescent virions: dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells. Hum Gene Ther 1998; 9: 367–378.

    Article  CAS  PubMed  Google Scholar 

  43. Suomalainen M, Nakano MY, Keller S, Boucke K, Stidwill RP, Greber UF . Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J Cell Biol 1999; 144: 657–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Greber UF, Suomalainen M, Stidwill RP, Boucke K, Ebersold MW, Helenius A . The role of the nuclear pore complex in adenovirus DNA entry. EMBO J 1997; 16: 5998–6007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sirena D, Lilienfeld B, Eisenhut M, Kalin S, Boucke K, Beerli RR et al. The human membrane cofactor CD46 is a receptor for species B adenovirus serotype 3. J Virol 2004; 78: 4454–4462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miyazawa N, Leopold PL, Hackett NR, Ferris B, Worgall S, Falck-Pedersen E et al. Fiber swap between adenovirus subgroups B and C alters intracellular trafficking of adenovirus gene transfer vectors. J Virol 1999; 73: 6056–6065.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Miyazawa N, Crystal RG, Leopold PL . Adenovirus serotype 7 retention in a late endosomal compartment prior to cytosol escape is modulated by fiber protein. J Virol 2001; 75: 1387–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shayakhmetov DM, Li ZY, Ternovoi V, Gaggar A, Gharwan H, Lieber A . The interaction between the fiber knob domain and the cellular attachment receptor determines the intracellular trafficking route of adenoviruses. J Virol 2003; 77: 3712–3723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alemany R, Curiel DT . CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Therapy 2001; 8: 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  50. Smith TA, Idamakanti N, Rollence ML, Marshall-Neff J, Kim J, Mulgrew K et al. Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. Hum Gene Ther 2003; 14: 777–787.

    Article  CAS  PubMed  Google Scholar 

  51. Breidenbach M, Rein DT, Wang M, Nettelbeck DM, Hemminki A, Ulasov I et al. Genetic replacement of the adenovirus shaft fiber reduces liver tropism in ovarian cancer gene therapy. Hum Gene Ther 2004; 15: 509–518.

    Article  CAS  PubMed  Google Scholar 

  52. Kanerva A, Mikheeva GV, Krasnykh V, Coolidge CJ, Lam JT, Mahasreshti PJ et al. Targeting adenovirus to the serotype 3 receptor increases gene transfer efficiency to ovarian cancer cells. Clin Cancer Res 2002; 8: 275–280.

    CAS  PubMed  Google Scholar 

  53. Kanerva A, Zinn KR, Chaudhuri TR, Lam JT, Suzuki K, Uil TG et al. Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus. Mol Ther 2003; 8: 449–458.

    Article  CAS  PubMed  Google Scholar 

  54. Haviv YS, Blackwell JL, Kanerva A, Nagi P, Krasnykh V, Dmitriev I et al. Adenoviral gene therapy for renal cancer requires retargeting to alternative cellular receptors. Cancer Res 2002; 62: 4273–4281.

    CAS  PubMed  Google Scholar 

  55. Kawakami Y, Li H, Lam JT, Krasnykh V, Curiel DT, Blackwell JL . Substitution of the adenovirus serotype 5 knob with a serotype 3 knob enhances multiple steps in virus replication. Cancer Res 2003; 63: 1262–1269.

    CAS  PubMed  Google Scholar 

  56. Volk AL, Rivera AA, Kanerva A, Bauerschmitz G, Dmitriev I, Nettelbeck DM et al. Enhanced adenovirus infection of melanoma cells by fiber-modification: incorporation of RGD peptide or Ad5/3 chimerism. Cancer Biol Ther 2003; 2: 511–515.

    Article  CAS  PubMed  Google Scholar 

  57. Takayama K, Reynolds PN, Short JJ, Kawakami Y, Adachi Y, Glasgow JN et al. A mosaic adenovirus possessing serotype Ad5 and serotype Ad3 knobs exhibits expanded tropism. Virology 2003; 309: 282–293.

    Article  CAS  PubMed  Google Scholar 

  58. Fallaux FJ, Kranenburg O, Cramer SJ, Houweling A, Van Ormondt H, Hoeben RC et al. Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum Gene Ther 1996; 7: 215–222.

    Article  CAS  PubMed  Google Scholar 

  59. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Le LP, Li J, Ternovoi VV, Siegal GP, Curiel DT . Fluorescently tagged canine adenovirus via modification with protein IX-enhanced green fluorescent protein. J Gen Virol (in press).

  61. Belousova N, Krendelchtchikova V, Curiel DT, Krasnykh V . Modulation of adenovirus vector tropism via incorporation of polypeptide ligands into the fiber protein. J Virol 2002; 76: 8621–8631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chartier C, Degryse E, Gantzer M, Dieterle A, Pavirani A, Mehtali M . Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J Virol 1996; 70: 4805–4810.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported with grants from the NIH (P30 AR41031, RO1 CA93796, RO1 CA940840, 1P50 CA83591), Department of Defense #W81XWH-04-1-0025, the Haley's Hope Memorial Support Fund for Osteosarcoma Research, and the University of Alabama at Birmingham Medical Scientist Training Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D T Curiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, L., Rivera, A., Glasgow, J. et al. Infectivity enhancement for adenoviral transduction of canine osteosarcoma cells. Gene Ther 13, 389–399 (2006). https://doi.org/10.1038/sj.gt.3302674

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302674

Keywords

This article is cited by

Search

Quick links