Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A novel DNA vaccine based on ubiquitin–proteasome pathway targeting ‘self’-antigens expressed in melanoma/melanocyte

Abstract

Cancer vaccine that targets ‘self’-antigens expressed at high levels in tumor cells is a potentially useful immunotherapy, but immunological tolerance often defeats this strategy. Here, we describe the use of a naked DNA vaccine encoding a self tumor antigen, tyrosinase-related protein 2, to whose N-terminus ubiquitin is fused in a ‘nonremovable’ fashion. Unlike conventional DNA vaccines, this vaccine broke the tolerance and induced protective immunity to melanoma in C57BL/6 mice, as evaluated by tumor growth, survival rate and lung metastasis. The protective immunity was cancelled in the proteasome activator PA28α/β knockout mice. Moreover, this vaccination exhibited therapeutic effects on melanoma implanted before vaccination. Our findings provide evidence for the first time that naked DNA vaccines encoding a ubiquitin-fused self-antigen preferentially induce the main effector CD8+ T cells through efficient proteolysis mediated by the ubiquitin–proteasome pathway, and lead the way to strategies aimed at targeting tissue differentiation antigens expressed by tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rosenberg SA . Cancer vaccines based on the identification of genes encoding cancer regression antigens. Immunol Today 1997; 18: 175–182.

    Article  CAS  PubMed  Google Scholar 

  2. Wang RF et al. Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med 1996; 184: 2207–2216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weber LW et al. Tumor immunity and autoimmunity induced by immunization with homologous DNA. J Clin Invest 1998; 102: 1258–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Overwijk WW et al. gp100/pmel 17 is a murine tumor rejection antigen: induction of ‘self’-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 1998; 188: 277–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bowne WB et al. Coupling and uncoupling of tumor immunity and autoimmunity. J Exp Med 1999; 190: 1717–1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tüting T et al. Induction of tumor antigen-specific immunity using plasmid DNA immunization in mice. Cancer Gene Ther 1999; 6: 73–80.

    Article  PubMed  Google Scholar 

  7. Steitz J et al. Genetic immunization with a melanocytic self-antigen linked to foreign helper sequences breaks tolerance and induces autoimmunity and tumor immunity. Gene Therapy 2002; 9: 208–213.

    Article  CAS  PubMed  Google Scholar 

  8. Engelhard VH et al. Antigen derived from melanocyte differentiation proteins: self-tolerance, autoimmunity, and use for cancer immunotherapy. Immunol Rev 2002; 188: 136–146.

    Article  CAS  PubMed  Google Scholar 

  9. Inaba K, Young JW, Steinman RM . Direct activation of CD8+ cytotoxic T lymphocytes by dendritic cells. J Exp Med 1987; 166: 182–194.

    Article  CAS  PubMed  Google Scholar 

  10. Sato M et al. Th1 cytokine-conditioned bone marrow-derived dendritic cells can bypass the requirement for Th functions during the generation of CD8+ CTL. J Immunol 2001; 167: 3687–3691.

    Article  CAS  PubMed  Google Scholar 

  11. Nishitani MA et al. A convenient cancer vaccine therapy with in vivo transfer of interleukin 12 expression plasmid using gene gun technology after priming with irradiated carcinoma cells. Cancer Gene Ther 2002; 9: 156–163.

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka K, Kasahara M . The MHC class I ligand-generating system: roles of immunoproteasomes and the interferon-gamma-inducible proteasome activator PA28. Immunol Rev 1998; 163: 161–176.

    Article  CAS  PubMed  Google Scholar 

  13. Rock KL, York IA, Saric T, Goldberg AL . Protein degradation and the generation of MHC class I-presented peptides. In: Dixon FJ (ed). Advances in Immunology, Vol 80. Academic Press: Oxford, 2002, pp 1–71.

    Google Scholar 

  14. Kloetzel P-M . Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2001; 2: 179–187.

    Article  CAS  PubMed  Google Scholar 

  15. Xiang R et al. An autologous oral DNA vaccine protects against murine melanoma. Proc Natl Acad Sci USA 2000; 97: 5492–5497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson ES, Ma PC, Ota IM, Varshavsky A . A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 1995; 270: 17442–17456.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang M et al. Ubiquitin-fusion degradation pathway plays an indispensable role in naked DNA vaccination with a chimeric gene encoding a syngeneic cytotoxic T lymphocyte epitope of melanocyte and green fluorescent protein. Immunology 2004; 112: 567–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Murata S et al. Immunoproteasome assembly and antigen presentation in mice lacking both PA28α and PA28β. EMBO J 2001; 20: 5898–5907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van den Eynde BJ, van der Bruggen P . T cell defined tumor antigens. Curr Opin Immunol 1997; 9: 684–693.

    Article  CAS  PubMed  Google Scholar 

  20. Rosenberg SA . A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 1999; 10: 281–287.

    Article  CAS  PubMed  Google Scholar 

  21. Bloom MB et al. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J Exp Med 1997; 185: 453–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lindauer M et al. The molecular basis of cancer immunotherapy by cytotoxic T lymphocytes. J Mol Med 1998; 76: 32–47.

    Article  CAS  PubMed  Google Scholar 

  23. Noppen C et al. Naturally processed and concealed HLA-A2.1-restricted epitopes from tumor-associated antigen tyrosinase-related protein-2. Int J Cancer 2000; 87: 241–246.

    Article  CAS  PubMed  Google Scholar 

  24. Rock KL et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 1994; 78: 761–771.

    Article  CAS  PubMed  Google Scholar 

  25. Cerundolo V et al. The proteasome-specific inhibitor lactocystin blocks presentation of cytotoxic T lymphocyte epitopes in human and murine cells. Eur J Immunol 1997; 27: 336–341.

    Article  CAS  PubMed  Google Scholar 

  26. Craiu A et al. Lactacystin and clasto-lactacystin b-lactone modify multiple proteasome β-subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation. J Biol Chem 1997; 272: 13437–13445.

    Article  CAS  PubMed  Google Scholar 

  27. Hershko A, Ciechanover A . The ubiquitin system. Annu Rev Biochem 1998; 67: 425–479.

    Article  CAS  PubMed  Google Scholar 

  28. Rodriguez F, Zhang J, Whitton JL . DNA immunization: ubiquitination of a viral protein enhances cytotoxic T-lymphocyte induction and antiviral protection but abrogates antibody induction. J Virol 1997; 71: 8497–8503.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Leitner WW et al. Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathway. Nat Med 2003; 9: 33–39.

    Article  CAS  PubMed  Google Scholar 

  30. Overwijk WW et al. Vaccination with a recombinant vaccinia virus encoding a ‘self’ antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4+ T lymphocytes. Proc Natl Acad Sci USA 1999; 96: 2982–2987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mackensen A et al. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34+ hematopoietic progenitor cells. Int J Cancer 2000; 86: 385–392.

    Article  CAS  PubMed  Google Scholar 

  32. Bronte V et al. Genetic vaccination with ‘self’ tyrosinase-related protein 2 causes melanoma eradication but not vitiligo. Cancer Res 2000; 60: 253–258.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sakai T et al. Gene gun-mediated delivery of an interleukin-12 expression plasmid protects against infections with the intracellular protozoan parasites Leishmaniamajor and Trypanosoma cruzi in mice. Immunology 2000; 99: 615–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sakai T et al. Gene gun-based co-immunization of merozoit surface protein-1 cDNA with IL-12 expression plasmid confers protection against lethal Plasmodium yoelii in A/J mice. Vaccine 2003; 21: 1432–1444.

    Article  CAS  PubMed  Google Scholar 

  35. Nanni P et al. Interleukin 12 gene therapy of MHC-negative murine melanoma metastases. Cancer Res 1998; 58: 1225–1230.

    CAS  PubMed  Google Scholar 

  36. Matzinger P . The JAM test. A simple assay for DNA fragmentation and cell death. J Immunol Methods 1991; 145: 185–192.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants-in-aid from the Ministry of Education, Culture, Sport, Science, and Technology of Japan (15019075, 15025255, 15390136, 15659265).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Obata, C., Hisaeda, H. et al. A novel DNA vaccine based on ubiquitin–proteasome pathway targeting ‘self’-antigens expressed in melanoma/melanocyte. Gene Ther 12, 1049–1057 (2005). https://doi.org/10.1038/sj.gt.3302490

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302490

Keywords

This article is cited by

Search

Quick links