Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Variability in infectivity of primary cell cultures of human brain tumors with HSV-1 amplicon vectors

Abstract

We investigated the variability in infectivity of cells in primary brain tumor samples from different patients using an HSV-1 amplicon vector. We studied the infectivity of HSV-1 amplicon vectors in tumor samples derived from neurosurgical resections of 20 patients. Cells were infected with a definite amount of HSV-1 amplicon vector HSV-GFP. Transduction efficiency in primary tumor cell cultures was compared to an established human glioma line. Moreover, duration of transgene expression was monitored in different tumor cell types. All primary cell cultures were infectable with HSV-GFP with variable transduction efficiencies ranging between 3.0 and 42.4% from reference human Gli36ΔEGFR glioma cells. Transduction efficiency was significantly greater in anaplastic gliomas and meningiomas (26.7±17.4%) compared to more malignant tumor types (glioblastomas, metastases; 11.2±8.5%; P=0.05). To further investigate the possible underlying mechanism of this variability, nectin-1/HevC expression was analyzed and was found to contribute, at least in part, to this variability in infectability. The tumor cells expressed the exogenous gene for 7 to 61 days with significant shorter expression in glioblastomas (18±13 d) compared to anaplastic gliomas (42±24 d; P<0.05). Interindividual variability of infectivity by HSV-1 virions might explain, at least in part, why some patients enrolled in gene therapy for glioblastoma in the past exhibited a sustained response to HSV-1-based gene- and virus therapy. Infectivity of primary tumor samples from respective patients should be tested to enable the development of efficient and safe herpes vector-based gene and virus therapy for clinical application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kleihues P, Cavenee WK . Pathology and Genetics of Tumours of the Nervous System (WHO). International Agency for Research on Cancer, IARC Press: Lyon, 2000.

    Google Scholar 

  2. Kleihues P, Soylemezoglu F, Schauble B, Scheithauer BW . Histopathology, classification, and grading of gliomas. Glia 1995; 15: 211–221.

    Article  CAS  PubMed  Google Scholar 

  3. Preston-Martin S . Epidemiology of gliomas. In: Berger MS, Wilson CD (eds). The Gliomas. Saunders: Philadelphia, 1999, pp 2–11.

    Google Scholar 

  4. Tatter SB, Harsh GR . Current treatment modalities for brain tumors. In: Chiocca EA, Breakefield XO (eds). Gene Therapy for Neurological Disorders and Brain Tumors. Humana Press: Totowa, NJ, 1998, pp 161–189.

    Chapter  Google Scholar 

  5. Bischoff JR et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    Article  CAS  PubMed  Google Scholar 

  6. Heise C et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2003; 6: 1134–1139.

    Article  Google Scholar 

  7. Jacobs A, Breakefield XO, Fraefel C . HSV-1-based vectors for gene therapy of neurological diseases and brain tumors: part I. HSV-1 structure, replication and pathogenesis. Neoplasia 1999; 1: 387–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jacobs A, Breakefield XO, Fraefel C . HSV-1-based vectors for gene therapy of neurological diseases and brain tumors: part II. Vector systems and applications. Neoplasia 1999; 1: 402–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kramm CM et al. Therapeutic efficiency and safety of a second-generation replication-conditional HSV1 vector for brain tumor gene therapy. Hum Gene Ther 1997; 8: 2057–2068.

    Article  CAS  PubMed  Google Scholar 

  10. Markert JM et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Therapy 2000; 7: 867–874.

    Article  CAS  PubMed  Google Scholar 

  11. Martuza RL et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991; 252: 854–856.

    Article  CAS  PubMed  Google Scholar 

  12. Rampling R et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Therapy 2000; 7: 859–866.

    Article  CAS  PubMed  Google Scholar 

  13. Constantini LC et al. Gene transfer to the nigrostriatal system by hybrid HSV/AAV amplicon vectors. Hum Gene Ther 1999; 10: 2481–2494.

    Article  Google Scholar 

  14. Fraefel C et al. Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J Virol 1996; 70: 7190–7197.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jacobs A et al. Improved herpes simplex virus type 1 amplicon vectors for proportional coexpression of positron emission tomography marker and therapeutic genes. Hum Gene Ther 2003; 14: 277–297.

    Article  CAS  PubMed  Google Scholar 

  16. Aboody-Guterman KS et al. Green fluorescent protein as a reporter for retrovirus and helper virus-free HSV-1 amplicon vector-mediated gene transfer into neural cells in culture and in vivo. Neuroreport 1997; 8: 3801–3808.

    Article  CAS  PubMed  Google Scholar 

  17. Maleniak TC, Darling JL, Lowenstein PR, Castro MG . Adenovirus-mediated expression of HSV1-TK or Fas ligand induces cell death in primary human glioma-derived cell cultures that are resistant to the chemotherapeutic agent CCNU. Cancer Gene Ther 2001; 8: 589–598.

    Article  CAS  PubMed  Google Scholar 

  18. Davidson BL, Breakefield XO . Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 2003; 4: 353–364.

    Article  CAS  PubMed  Google Scholar 

  19. Lasner TM et al. Therapy of a murine model of pediatric brain tumors using a herpes simplex virus type-1 ICP34.5 mutant and demonstration of viral replication within the CNS. J Neuropathol Exp Neurol 1996; 55: 1259–1269.

    Article  CAS  PubMed  Google Scholar 

  20. Liu BL et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Therapy 2003; 10: 292–303.

    Article  CAS  PubMed  Google Scholar 

  21. Mineta T et al. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1995; 1: 938–943.

    Article  CAS  PubMed  Google Scholar 

  22. Toda M, Rabkin SD, Martuza RL . Treatment of human breast cancer in a brain metastatic model by G207, a replication-competent multimutated herpes simplex virus 1. Hum Gene Ther 1998; 9: 2177–2185.

    Article  CAS  PubMed  Google Scholar 

  23. Papanastassiou V et al. The potential for efficacy of the modified (ICP 34.5(−)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Therapy 2002; 9: 398–406.

    Article  CAS  PubMed  Google Scholar 

  24. Chahlavi A et al. Effect of prior exposure to herpes simplex virus 1 on viral vector-mediated tumor therapy in immunocompetent mice. Gene Therapy 1999; 6: 1751–1758.

    Article  CAS  PubMed  Google Scholar 

  25. Delman KA et al. Effects of preexisting immunity on the response to herpes simplex-based oncolytic viral therapy. Hum Gene Ther 2000; 11: 2465–2472.

    Article  CAS  PubMed  Google Scholar 

  26. Lambright ES et al. Effect of preexisting anti-herpes immunity on the efficacy of herpes simplex viral therapy in a murine intraperitoneal tumor model. Mol Ther 2000; 2: 387–393.

    Article  CAS  PubMed  Google Scholar 

  27. Goss JR et al. Antinociceptive effect of a genomic herpes simplex virus-based vector expressing human proenkephalin in rat dorsal root ganglion. Gene Therapy 2001; 8: 551–556.

    Article  CAS  PubMed  Google Scholar 

  28. Hao S et al. HSV-mediated gene transfer of the glial cell-derived neurotrophic factor provides an antiallodynic effect on neuropathic pain. Mol Ther 2003; 8: 367–375.

    Article  CAS  PubMed  Google Scholar 

  29. Lim F et al. Generation of high-titer defective HSV-1 vectors using an IE 2 deletion mutant and quantitative study of expression in cultured cortical cells. Biotechniques 1996; 20: 460–469.

    Article  CAS  PubMed  Google Scholar 

  30. Preston CM . Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild-type virus or the temperature-sensitive mutant tsK. J Virol 1979; 29: 275–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pechan PA et al. Combined HSV-1 recombinant and amplicon piggyback vectors: replication-competent and defective forms, and therapeutic efficacy for experimental gliomas. J Gene Med 1999; 1: 176–185.

    Article  CAS  PubMed  Google Scholar 

  32. Cunningham C, Davison AJ . A cosmid-based system for constructing mutants of herpes simplex virus type 1. Virology 1993; 197: 116–124.

    Article  CAS  PubMed  Google Scholar 

  33. Saeki Y et al. Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome. Mol Ther 2001; 3: 591–601.

    Article  CAS  PubMed  Google Scholar 

  34. Saeki Y, Breakefield XO, Chiocca A . Improved HSV-1 amplicon packaging system using ICP27-deleted, oversized HSV-1 BAC DNA. Methods Mol Med 2003; 76: 51–60.

    CAS  PubMed  Google Scholar 

  35. Johnston KM et al. HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells. Hum Gene Ther 1997; 8: 359–370.

    Article  CAS  PubMed  Google Scholar 

  36. Costantini LC, Fraefel C, Breakefield XO, Isacson O . Herpes simplex virus/adeno-associated virus hybrid vectors for gene transfer to neurons. Preparation and use. Methods Mol Med 2002; 69: 479.

    Google Scholar 

  37. Sandler VM et al. Modified herpes simplex virus delivery of enhanced GFP into central nervous system. J Neurosci Methods 2002; 121: 211–219.

    Article  CAS  PubMed  Google Scholar 

  38. Mineta T, Rabkin SD, Martuza RL . Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant. Cancer Res 1994; 54: 3963–3966.

    CAS  PubMed  Google Scholar 

  39. Spear MA et al. Cytotoxicity, apoptosis, and viral replication in tumor cells treated with oncolytic ribonucleotide reductase-defective herpes simplex type 1 virus (hrR3) combined with ionizing radiation. Cancer Gene Therapy 2000; 7: 1051–1059.

    Article  CAS  PubMed  Google Scholar 

  40. Aghi M et al. Multimodal cancer treatment mediated by replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovir/herpes simplex virus thymidine kinase gene therapies. Cancer Res 1999; 59: 3861–3865.

    CAS  PubMed  Google Scholar 

  41. Chase M, Chung RY, Chiocca A . An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophophamide chemotherapy. Nat Biotechnol 1998; 16: 444–448.

    Article  CAS  PubMed  Google Scholar 

  42. Advani SJ et al. Enhancement of replication of genetically engineered herpes simplex viruses by ionizing radiation: a new paradigm for destruction of therapeutically intractable tumors. Gene Therapy 1998; 5: 160–165.

    Article  CAS  PubMed  Google Scholar 

  43. Pyles RB et al. A novel multiply-mutated HSV-1 strain for the treatment of human brain tumors. Hum Gene Ther 1997; 8: 533–544.

    Article  CAS  PubMed  Google Scholar 

  44. Kaplitt MG et al. Mutant herpes simplex virus induced regression of tumors growing in immunocompetent rats. J Neuro-Oncol 1994; 19: 137–147.

    Article  CAS  Google Scholar 

  45. Andreansky S et al. Evaluation of genetically engineered herpes simplex viruses as oncolytic agents for human malignant brain tumors. Cancer Res 1997; 57: 1502–1509.

    CAS  PubMed  Google Scholar 

  46. Hoshi M et al. Antitumoral effects of defective herpes simplex virus-mediated transfer of tissue inhibitor of metalloproteinases-2 gene in malignant glioma U87 in vitro: consequences for anti-cancer gene therapy. Cancer Gene Ther 2000; 7: 799–805.

    Article  CAS  PubMed  Google Scholar 

  47. Moriuchi S et al. Enhanced tumor cell killing in the presence of ganciclovir by herpessimplex virus type 1 vector-directed coexpression of human tumor necrosis factor-a and herpes simplex virus thymidine kinase. Cancer Res 1998; 58: 5731–5737.

    CAS  PubMed  Google Scholar 

  48. Lam P et al. Dynamics of transgene expression in human glioblastoma cells mediated by herpes simplex virus/adeno-associated virus amplicon vectors. Hum Gene Ther 2002; 13: 2147–2159.

    Article  CAS  PubMed  Google Scholar 

  49. Jacobs A et al. Positron-emission tomography-based imaging of transgene expression mediated by replication-conditional, oncolytic herpes simplex virus type 1 mutant vectors in vivo. Cancer Res 2001; 61: 2983–2995.

    CAS  PubMed  Google Scholar 

  50. Burton EA, Fink D, Glorioso JC . Gene delivery using herpes simplex virus vectors. DNA Cell Biol 2002; 21: 915–936.

    Article  CAS  PubMed  Google Scholar 

  51. Campadelli-Fiume G, Cocchi F, Menotti L, Lopez M . The novel receptors that mediate the entry of herpes simples viruses and animal alphaherpesviuses into cells. Rev Med Virol 2000; 10: 305–319.

    Article  CAS  PubMed  Google Scholar 

  52. Mata M, Zhang M, Hu X, Fink DJ . HveC (nectin-1) is expressed at high levels in sensory neurons, but not in motor neurons, of the rat peripheral nervous system. J Neurovirol 2001; 7: 476–480.

    Article  CAS  PubMed  Google Scholar 

  53. Darnell Jr JE, Kerr IM, Stark GR . Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264: 1415–1421.

    Article  CAS  PubMed  Google Scholar 

  54. Rosenblum MG et al. Growth inhibitory effects of interferon-beta but not interferon-alpha on human glioma cells: correlation of receptor binding, 2′,5′-oligoadenylate synthetase and protein kinase activity. J Interferon Res 1990; 10: 141–151.

    Article  CAS  PubMed  Google Scholar 

  55. Spear MA et al. HSV-1 amplicon peptide display vector. J Virol Methods 2002; 107: 71–79.

    Article  Google Scholar 

  56. MacKie EA et al. Selective in vitro replication of herpes simplex virus type 1 (HSV-1) ICP34.5 null mutants in primary human CNS tumours – evaluation of a potentially effective clinical therapy. Br J Cancer 1996; 74: 745–752.

    Article  Google Scholar 

  57. Detta A et al. Proliferative activity and in vitro replication of HSV1716 in human metastatic brain tumours. J Gene Med 2003; 5: 681–689.

    Article  PubMed  Google Scholar 

  58. Ichikawa T et al. MRI of transgene expression: correlation to therapeutic gene expression. Neoplasia 2002; 4: 523–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fraefel C et al. Gene transfer into hepatocytes mediated by helper virus free HSV/AAV hybrid vectors. Mol Med 1997; 3: 813–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministerium für Schule, Wissenschaft und Forschung NRW (MSWF 516-40000299), the Center for Molecular Medicine Cologne (CMMC-TV46), the Max-Planck Society, Germany and Sixth FW EU Grant EMIL (LSHC-CT-2004-503569).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rueger, M., Winkeler, A., Miletic, H. et al. Variability in infectivity of primary cell cultures of human brain tumors with HSV-1 amplicon vectors. Gene Ther 12, 588–596 (2005). https://doi.org/10.1038/sj.gt.3302462

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302462

Keywords

This article is cited by

Search

Quick links