Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD)

Abstract

Duchenne muscular dystrophy (DMD) is a lethal genetic muscle disorder caused by recessive mutations in the dystrophin gene. The size of the gene (2.4 Mb) and mRNA (14 kb) in addition to immunogenicity problems and inefficient transduction of mature myofibres by currently available vector systems are formidable obstacles to the development of efficient gene therapy approaches. Adeno-associated viral (AAV) vectors overcome many of the problems associated with other vector systems (nonpathogenicity and minimal immunogenicity, extensive cell and tissue tropism) but accommodate limited transgene capacity (<5 kb). As a result of these observations, a number of laboratories worldwide have engineered a series of microdystrophin cDNAs based on genotype–phenotype relationship in Duchenne (DMD) and Becker (BMD) dystrophic patients, and transgenic studies in mdx mice. Recent progress in characterization of AAV serotypes from various species has demonstrated that alternative AAV serotypes are far more efficient in transducing muscle than the traditionally used AAV2. This article summarizes the current progress in the field of recombinant adeno-associated viral (rAAV) delivery for DMD, including optimization of recombinant AAV-microdystrophin vector systems/cassettes targeting the skeletal and cardiac musculature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Acsadi G et al. Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature 1991; 352: 815–818.

    CAS  PubMed  Google Scholar 

  2. Chamberlain JS . Gene Therapy of muscular dystrophy. Hum Mol Genet 2002; 11: 2355–2362.

    CAS  PubMed  Google Scholar 

  3. Hartigan-O’Connor D, Chamberlain JS . Developments in gene therapy for muscular dystrophy. Microsc Res Technol 2000; 48: 223–238.

    Google Scholar 

  4. Lynch GS, Rafael JA, Chamberlain JS, Faulkner JA . Contraction-induced injury to single permeabilized muscle fibers from mdx, transgenic mdx, and control mice. Am J Physiol Cell Physiol 2000; 279: C1290–C1294.

    CAS  PubMed  Google Scholar 

  5. DelloRusso C, Crawford RW, Chamberlain JS, Brooks SV . Tibialis anterior muscles in mdx mice are highly susceptible to contraction-induced injury. J Muscle Res Cell Motil 2001; 22: 467–475.

    CAS  PubMed  Google Scholar 

  6. Rando TA . The dystrophin–glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies. Muscle Nerve 2001; 24: 1575–1594.

    CAS  PubMed  Google Scholar 

  7. Rafael JA et al. Dystrophin and utrophin influence fiber type composition and post-synaptic membrane structure. Hum Mol Genet 2000; 9: 1357–1367.

    CAS  PubMed  Google Scholar 

  8. Friedrich O et al. Mini-dystrophin restores L-type calcium currents in skeletal muscle of transgenic mdx mice. J Physiol (Lond) 2004; 555: 251–265.

    CAS  Google Scholar 

  9. Lynch GS et al. Force and power output of fast and slow skeletal muscles from mdx mice 6–28 months old. J Physiol (Lond) 2001; 535: 591–600.

    CAS  Google Scholar 

  10. Cox GA et al. Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature 1993; 364: 725–729.

    CAS  PubMed  Google Scholar 

  11. Chamberlain JS . Dystrophin levels required for genetic correction of Duchenne muscular dystrophy. Basic Appl Myol 1997; 7: 251–255.

    Google Scholar 

  12. Athanasopoulos T, Fabb S, Dickson G . Gene therapy. vectors based on adeno-associated virus: characteristics and applications to acquired and inherited diseases [Review]. Int J Mol Med 2000; 6: 363–375.

    CAS  PubMed  Google Scholar 

  13. Buning H et al. AAV-based gene transfer. Curr Opin Mol Ther 2003; 5: 367–375.

    PubMed  Google Scholar 

  14. Buning H et al. Receptor targeting of adeno-associated virus vectors. Gene Therapy 2003; 10: 1142–1151.

    CAS  PubMed  Google Scholar 

  15. Chao H et al. Persistent expression of canine factor IX in hemophilia B canines. Gene Therapy 1999; 6: 1695–1704.

    CAS  PubMed  Google Scholar 

  16. Lu Y . Recombinant adeno-associated virus as delivery vector for gene therapy – a review. Stem Cells Dev 2003; 13: 133–145.

    Google Scholar 

  17. Cordier L et al. Rescue of skeletal muscles of gamma-sarcoglycan-deficient mice with adeno-associated virus-mediated gene transfer. Mol Ther 2000; 1: 119–129.

    CAS  PubMed  Google Scholar 

  18. Snyder RO et al. Efficient and stable adeno-associated virus-mediated transduction in the skeletal muscle of adult immunocompetent mice. Hum Gene Ther 1997; 8: 1891–1900.

    CAS  PubMed  Google Scholar 

  19. Xiao X et al. Full functional rescue of a complete muscle (TA) in dystrophic hamsters by adeno-associated virus vector-directed gene therapy. J Virol 2000; 74: 1436–1442.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Abadie J et al. Recombinant adeno-associated virus type 2 mediates highly efficient gene transfer in regenerating rat skeletal muscle. Gene Therapy 2002; 9: 1037–1043.

    CAS  PubMed  Google Scholar 

  21. Chao HJ et al. Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol Ther 2000; 2: 619–623.

    Article  CAS  PubMed  Google Scholar 

  22. Arruda VR et al. Safety and efficacy of factor IX gene transfer to skeletal muscle in murine and canine hemophilia B models by adeno-associated viral vector serotype 1. Blood 2004; 103: 85–92.

    CAS  PubMed  Google Scholar 

  23. Gao GP et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hauck B, Xiao WD . Characterization of tissue tropism determinants of adeno-associated virus type 1. J Virol 2003; 77: 2768–2774.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hildinger M et al. Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed gene transfer. J Virol 2001; 75: 6199–6203.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Xiao WD et al. Gene therapy vectors based on adeno-associated virus type 1. J Virol 1999; 73: 3994–4003.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rabinowitz JE et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76: 791–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bantel-Schaal U, Delius H, Schmidt R, zur Hausen H . Human adeno-associated virus type 5 is only distantly related to other known primate helper-dependent parvoviruses. J Virol 1999; 73: 939–947.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Walters RW et al. Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J Biol Chem 2001; 276: 20610–20616.

    CAS  PubMed  Google Scholar 

  30. Duan DS et al. Enhancement of muscle gene delivery with pseudotyped adeno-associated virus type 5 correlates with myoblast differentiation. J Virol 2001; 75: 7662–7671.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bowles DE, Rabinowitz JE, Samulski RJ . Marker rescue of adeno-associated virus (AAV) capsid mutants: a novel approach for chimeric AAV production. J Virol 2003; 77: 423–432.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hauck B, Chen L, Xiao WD . Generation and characterization of chimeric recombinant AAV vectors. Mol Ther 2003; 7: 419–425.

    CAS  PubMed  Google Scholar 

  33. DelloRusso C et al. Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc Natl Acad Sci USA 2002; 99: 12979–12984.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bies RD et al. Human and murine dystrophin messenger–RNA transcripts are differentially expressed during skeletal-muscle, heart, and brain development. Nucleic Acids Res 1992; 20: 1725–1731.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Corrado K, Mills PL, Chamberlain JS . Deletion analysis of the dystrophin–actin binding domain. FEBS Lett 1994; 344: 255–260.

    CAS  PubMed  Google Scholar 

  36. Corrado K et al. Transgenic mdx mice expressing dystrophin with a deletion in the actin-binding domain display a ‘mild becker’ phenotype. J Cell Biol 1996; 134: 873–884.

    CAS  PubMed  Google Scholar 

  37. Crawford GE et al. Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J Cell Biol 2000; 150: 1399–1410.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Crawford GE, Lu QL, Partridge TA, Chamberlain JS . Suppression of revertant fibers in mdx mice by expression of a functional dystrophin. Hum Mol Genet 2001; 10: 2745–2750.

    CAS  PubMed  Google Scholar 

  39. Gregorevic P, Chamberlain JS . Gene therapy for muscular dystrophy – a review of promising progress. Expert Opin Biol Ther 2003; 3: 803–814.

    CAS  PubMed  Google Scholar 

  40. Ahmad A et al. Mdx mice inducibly expressing dystrophin provide insights into the potential of gene therapy for Duchenne muscular dystrophy. Hum Mol Genet 2000; 9: 2507–2515.

    CAS  PubMed  Google Scholar 

  41. Decrouy A et al. Mini-dystrophin gene transfer in mdx 4(cv) diaphragm muscle fibers increases sarcolemmal stability. Gene Therapy 1997; 4: 401–408.

    CAS  PubMed  Google Scholar 

  42. Roberts ML, Dickson G . The future of Duchenne muscular dystrophy gene therapy: Shrinking the dystrophin gene. Curr Opin Mol Ther 2002; 4: 343–348.

    CAS  PubMed  Google Scholar 

  43. Sakamoto M et al. Micro-dystrophin cDNA ameliorates dystrophic phenotypes when introduced into mdx mice as a transgene. Biochem Biophys Res Commun 2002; 293: 1265–1272.

    CAS  PubMed  Google Scholar 

  44. Wells DJ, Wells KE . Gene transfer studies in animals: what do they really tell us about the prospects for gene therapy in DMD? Neuromuscular Disord 2002; 12: S11–S22.

    Google Scholar 

  45. Decrouy A et al. Mini- and full-length dystrophin gene transfer induces the recovery of nitric oxide synthase at the sarcolemma of mdx4(cv) skeletal muscle fibers. Gene Therapy 1998; 5: 59–64.

    CAS  PubMed  Google Scholar 

  46. Dickson G, Roberts ML, Wells DJ, Fabb SA . Recombinant micro-genes and dystrophin viral vectors. Neuromuscular Disord 2002; 12: S40–S44.

    Google Scholar 

  47. Fabb SA, Wells DJ, Serpente P, Dickson G . Adeno-associated virus vector gene transfer and sarcolemmal expression of a 144 kDa micro-dystrophin effectively restores the dystrophin-associated protein complex and inhibits myofibre degeneration in nude/mdx mice. Hum Mol Genet 2002; 11: 733–741.

    CAS  PubMed  Google Scholar 

  48. Harper SQ, Crawford RW, DelloRusso C, Chamberlain JS . Spectrin-like repeats from dystrophin and alpha-actinin-2 are not functionally interchangeable. Hum Mol Genet 2002; 11: 1807–1815.

    CAS  PubMed  Google Scholar 

  49. Harper SQ et al. Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 2002; 8: 253–261.

    CAS  PubMed  Google Scholar 

  50. Yuasa K et al. Adeno-associated virus vector-mediated gene transfer into dystrophin-deficient skeletal muscles evokes enhanced immune response against the transgene product. Gene Therapy 2002; 9: 1576–1588.

    CAS  PubMed  Google Scholar 

  51. Clemens PR et al. Carrier detection and prenatal diagnosis in Duchenne and Becker muscular dystrophy families, using dinucleotide repeat polymorphisms. Am J Hum Genet 1991; 49: 951–960.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Watchko J et al. Adeno-associated virus vector-mediated minidystrophin gene therapy improves dystrophic muscle contractile function in mdx mice. Hum Gene Ther 2002; 13: 1451–1460.

    CAS  PubMed  Google Scholar 

  53. Xiao X et al. Full functional rescue of a complete muscle (TA) in dystrophic hamsters by adeno-associated virus vector-directed gene therapy. J Virol 2000; 74: 1436–1442.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Li S et al. Muscle-specific enhancement of gene expression by incorporation of SV/40 enhancer in the expression plasmid. Gene Therapy 2001; 8: 494–497.

    CAS  PubMed  Google Scholar 

  55. Scott JM et al. Viral vectors for gene transfer of micro-, mini-, or full-length dystrophin. Neuromuscular Disord 2002; 12: S23–S29.

    Google Scholar 

  56. Cordier L et al. Muscle-specific promoters may be necessary for adeno-associated virus-mediated gene transfer in the treatment of muscular dystrophies. Hum Gene Ther 2001; 12: 205–215.

    CAS  PubMed  Google Scholar 

  57. Yue YP, Duan DS . Development of multiple cloning site cis-vectors for recombinant adeno-associated virus production. Biotechniques 2002; 33: 672–675.

    CAS  PubMed  Google Scholar 

  58. Xu LF et al. CMV-beta-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1 alpha promoter and results in therapeutic levels of human factor X in mice. Hum Gene Ther 2001; 12: 563–573.

    CAS  PubMed  Google Scholar 

  59. Larochelle N et al. The short MCK1350 promoter/enhancer allows for sufficient dystrophin expression in skeletal muscles of mdx mice. Biochem Biophys Res Commun 2002; 292: 626–631.

    CAS  PubMed  Google Scholar 

  60. Dunant P et al. Expression of dystrophin driven by the 1.35-kb MCK promoter ameliorates muscular dystrophy in fast, but not in slow muscles of transgenic mdx mice. Mol Ther 2003; 8: 80–89.

    CAS  PubMed  Google Scholar 

  61. Hagstrom JN et al. Improved muscle-derived expression of human coagulation factor IX from a skeletal actin/CMV hybrid enhancer/promoter. Blood 2000; 95: 2536–2542.

    CAS  PubMed  Google Scholar 

  62. Haberman RP, Mccown TJ, Samulski RJ . Novel transcriptional regulatory signals in the adeno-associated virus terminal repeat A/D junction element. J Virol 2000; 74: 8732–8739.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hartigan-O’Connor D et al. Immune evasion by muscle-specific gene expression in dystrophic muscle. Mol Ther 2001; 4: 525–533.

    PubMed  Google Scholar 

  64. Phelps SF et al. Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet 1995; 4: 1251–1258.

    CAS  PubMed  Google Scholar 

  65. Draghia-Akli R et al. Myogenic expression of an injectable protease-resistant growth hormone-releasing hormone augments long-term growth in pigs. Nat Biotechnol 1999; 17: 1179–1183.

    CAS  PubMed  Google Scholar 

  66. Li X, Eastman EM, Schwartz RJ, Draghia-Akli R . Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences. Nat Biotechnol 1999; 17: 241–245.

    CAS  PubMed  Google Scholar 

  67. Phillips MI et al. Vigilant vector: heart-specific promoter in an adeno-associated virus vector for cardioprotection. Hypertension 2002; 39: 651–655.

    CAS  PubMed  Google Scholar 

  68. Sun LW, Li J, Xiao X . Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med 2000; 6: 599–602.

    CAS  PubMed  Google Scholar 

  69. Yan ZY, Zhang YL, Duan DS, Engelhardt JF . Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci USA 2000; 97: 6716–6721.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yan ZY, Ritchie YC, Duan DS, Engelhardt JF . Recombinant AAV-mediated gene delivery using dual vector heterodimerization. Gen Ther Methods 2002; 346: 334–357.

    CAS  Google Scholar 

  71. Yang JS et al. Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination. J Virol 1999; 73: 9468–9477.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Duan DS, Yue YP, Engelhardt JF . Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther 2001; 4: 383–391.

    CAS  PubMed  Google Scholar 

  73. Samulski RJ . Expanding the AAV package. Nat Biotechnol 2000; 18: 497–498.

    CAS  PubMed  Google Scholar 

  74. Yue YP, Duan DS . Double strand interaction is the predominant pathway for intermolecular recombination of adeno-associated viral genomes. Virology 2003; 313: 1–7.

    CAS  PubMed  Google Scholar 

  75. Chenuaud P et al. Optimal design of a single recombinant adeno-associated virus derived from serotypes 1 and 2 to achieve more tightly regulated transgene expression from nonhuman primate muscle. Mol Ther 2004; 9: 410–418.

    CAS  PubMed  Google Scholar 

  76. van Deutekom JCT et al. Implications of maturation for viral gene delivery to skeletal muscle. Neuromuscular Disord 1998; 8: 135–148.

    CAS  Google Scholar 

  77. Work LM et al. Development of efficient viral vectors selective for vascular smooth muscle cells. Mol Ther 2004; 9: 198–208.

    CAS  PubMed  Google Scholar 

  78. Svensson EC et al. Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 1999; 99: 201–205.

    CAS  PubMed  Google Scholar 

  79. Vassalli G et al. Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int J Cardiol 2003; 90: 229–238.

    PubMed  Google Scholar 

  80. Asfour B et al. Uniform long-term gene expression using adeno-associated virus (AAV) by ex vivo recirculation in rat-cardiac isografts. Thor Cardiov Sur 2002; 50: 347–350.

    CAS  Google Scholar 

  81. Hoshijima M et al. Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med 2002; 8: 864–871.

    CAS  PubMed  Google Scholar 

  82. Li J et al. Efficient and long-term intracardiac gene transfer in delta-sarcoglycan-deficiency hamster by adeno-associated virus-2 vectors. Gen Therapy 2003; 10: 1807–1813.

    CAS  Google Scholar 

  83. Yue YP et al. Microdystrophin gene therapy of cardiomyopathy restores dystrophin–glycoprotein complex and improves sarcolemma integrity in the mdx mouse heart. Circulation 2003; 108: 1626–1632.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Davis HL, Jasmin BJ . Direct gene transfer into mouse diaphragm. FEBS Lett 1993; 333: 146–150.

    CAS  PubMed  Google Scholar 

  85. Decrouy A et al. Mini-dystrophin gene transfer in mdx4cv diaphragm muscle fibers increases sarcolemmal stability. Gene Therapy 1997; 4: 401–408.

    CAS  PubMed  Google Scholar 

  86. Feng L, Makiya N, Clemens PR, Huang L . Transfer of full-length dmd to the diaphragm muscle of dmd mdx/md mice through systemic administration of plasmid DNA. Mol Ther 2001; 4: 45–51.

    Google Scholar 

  87. Mah C et al. A new method for recombinant adeno-associated virus vector delivery to murine diaphragm. Mol Ther 2004; 9: 458–463.

    CAS  PubMed  Google Scholar 

  88. Pruchnic R et al. The use of adeno-associated virus to circumvent the maturation-dependent viral transduction of muscle fibers. Hum Gene Ther 2000; 11: 521–536.

    CAS  PubMed  Google Scholar 

  89. Chang DS et al. Adeno-associated viral vector-mediated gene transfer of VEGF normalizes skeletal muscle oxygen tension and induces arteriogenesis in ischemic rat hindlimb. Mol Ther 2003; 7: 44–51.

    CAS  PubMed  Google Scholar 

  90. Donahue BA et al. Selective uptake and sustained expression of AAV vectors following subcutaneous delivery. J Gene Med 1999; 1: 31–42.

    CAS  PubMed  Google Scholar 

  91. Auricchio A et al. Noninvasive gene transfer to the lung for systemic delivery of therapeutic proteins. J Clin Invest 2002; 110: 499–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Aubert D et al. Cytotoxic immune response after retroviral-mediated hepatic gene transfer in rat does not preclude expression from adeno-associated virus 1 transduced muscles. Hum Gene Ther 2003; 14: 473–481.

    CAS  PubMed  Google Scholar 

  93. Blankinship MJ et al. Progress toward gene therapy of Duchenne muscular dystrophy using truncated four-repeat dystrophin and AAV6. J Neurol Sci 2002; 199: 01–05.

    Google Scholar 

  94. Blouin V et al. Improving rAAV production and purification: towards the definition of a scaleable process. J Gene Med 2004; 6: S223–S228.

    CAS  PubMed  Google Scholar 

  95. Grimm D et al. Preclinical in vivo evaluation of pseudotyped adeno-associated virus vectors for liver gene therapy. Blood 2003; 102: 2412–2419.

    CAS  PubMed  Google Scholar 

  96. Harding TC et al. Intravenous administration of an AAV-2 vector for the expression of factor IX in mice and a dog model of hemophilia B. Gene Therapy 2004; 11: 204–213.

    CAS  PubMed  Google Scholar 

  97. Ponnazhagan S et al. Adeno-associated virus 2-mediated gene transfer in vivo: organ-tropism and expression of transduced sequences in mice. Gene 1997; 190: 203–210.

    CAS  PubMed  Google Scholar 

  98. Halbert CL, Allen JM, Miller AD . Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol 2001; 75: 6615–6624.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lipshutz GS et al. In utero delivery of adeno-associated viral vectors: Intraperitoneal gene transfer produces long-term expression. Mol Ther 2001; 3: 284–292.

    CAS  PubMed  Google Scholar 

  100. Bouchard S et al. Long-term transgene expression in cardiac and skeletal muscle following fetal administration of adenoviral or adeno-associated viral vectors in mice. J Gene Med 2003; 5: 941–950.

    CAS  PubMed  Google Scholar 

  101. Mitchell M et al. Long-term gene transfer to mouse fetuses with recombinant adenovirus and adeno-associated virus (AAV) vectors. Gene Therapy 2000; 7: 1986–1992.

    CAS  PubMed  Google Scholar 

  102. Erles K, Sebokova P, Schlehofer JR . Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J Med Virol 1999; 59: 406–411.

    CAS  PubMed  Google Scholar 

  103. Wang CH et al. Can genes transduced by adeno-associated virus vectors elicit or evade an immune response? Arch Virol 2004; 149: 1–15.

    CAS  PubMed  Google Scholar 

  104. Xin KQ et al. A DNA vaccine containing inverted terminal repeats from adeno-associated virus increases immunity to HIV. J Gene Med 2003; 5: 438–445.

    CAS  PubMed  Google Scholar 

  105. Xiao WD et al. Route of administration determines induction of T-cell-independent humoral responses to adeno-associated virus vectors. Mol Ther 2000; 1: 323–329.

    CAS  PubMed  Google Scholar 

  106. Brockstedt DG et al. Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration. Clin Immunol 1999; 92: 67–75.

    CAS  PubMed  Google Scholar 

  107. Zhang Y, Chirmule N, Gao GP, Wilson J . CD40 ligand-dependent activation of cytotoxic T lymphocytes by adeno-associated virus vectors in vivo: role of immature dendritic cells. J Virol 2000; 74: 8003–8010.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Chirmule N et al. Humoral immunity to adeno-associated virus type 2 vectors following administration to murine and nonhuman primate muscle. J Virol 2000; 74: 2420–2425.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ge Y, Powell S, Van Roey M, McArthur JG . Factors influencing the development of an anti-factor IX (FIX) response following administration of adeno-associated virus-FIX. Blood 2001; 97: 3733–3737.

    CAS  PubMed  Google Scholar 

  110. Manno CS et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003; 101: 2963–2972.

    CAS  PubMed  Google Scholar 

  111. Arruda VR et al. Lack of germline transmission of vector sequences following systemic administration of recombinant AAV-2 vector in males. Mol Ther 2001; 4: 586–592.

    CAS  PubMed  Google Scholar 

  112. Jooss K, Yang YP, Fisher KJ, Wilson JM . Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 1998; 72: 4212–4223.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hernandez YJ et al. Latent adeno-associated virus infection elicits humoral but not cell-mediated immune responses in a nonhuman primate model. J Virol 1999; 73: 8549–8558.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Herzog RW et al. Influence of vector dose on factor IX-specific T and B cell responses in muscle-directed gene therapy. Hum Gene Ther 2002; 13: 1281–1291.

    CAS  PubMed  Google Scholar 

  115. Sarukhan A et al. Successful interference with cellular immune responses to immunogenic proteins encoded by recombinant viral vectors. J Virol 2001; 75: 269–277.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Dressman D et al. Delivery of alpha- and beta-sarcoglycan by recombinant adeno-associated virus: efficient rescue of muscle, but differential toxicity. Hum Gene Ther 2002; 13: 1631–1646.

    CAS  PubMed  Google Scholar 

  117. Ferrer A, Wells KE, Wells DJ . Immune responses to dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Gene Therapy 2000; 7: 1439–1446.

    CAS  PubMed  Google Scholar 

  118. Manning WC et al. Transient immunosuppression allows transgene expression following readministration of adeno-associated viral vectors. Hum Gene Ther 1998; 9: 477–485.

    CAS  PubMed  Google Scholar 

  119. Dutheil N, Shi F, Dupressoir T, Linden RM . Adeno-associated virus site-specifically integrates into a muscle-specific DNA region. Proc Natl Acad Sci USA 2000; 97: 4862–4866.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Duan DS et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long- term episomal persistence in muscle tissue. J Virol 1998; 72: 8568–8577.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Duan DS, Yan ZY, Yue YP, Engelhardt JF . Structural analysis of adeno-associated virus transduction circular intermediates. Virology 1999; 26: 8–14.

    Google Scholar 

  122. Vincent-Lacaze N et al. Structure of adeno-associated virus vector DNA following transduction of the skeletal muscle. J Virol 1999; 73: 1949–1955.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Russell DW . AAV loves an active genome. Nat Genet 2003; 34: 241–242.

    CAS  PubMed  Google Scholar 

  124. Pachori AS et al. Potential for germ line transmission after intramyocardial gene delivery by adeno-associated virus. Biochem Biophys Res Commun 2004; 313: 528–533.

    CAS  PubMed  Google Scholar 

  125. Couto L, Parker A, Gordon JW . Direct exposure of mouse spermatozoa to very high concentrations of a serotype-2 adeno-associated virus vector fails to lead to germ cell transduction. Hum Gene Ther 2004; 15: 287–291.

    CAS  PubMed  Google Scholar 

  126. Schnepp BC et al. Genetic fate of recombinant adeno-associated virus vector genomes in muscle. J Virol 2003; 77: 3495–3504.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. McCarty DM et al. Identification of linear sequences that specifically bind the adeno-associated virus Rep protein. J Virol 1994; 68: 4988–4997.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Megeney LA et al. Severe cardiomyopathy in mice lacking dystrophin and MyoD. Proc Natl Acad Sci USA 1999; 96: 220–225.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Nakamura A et al. Progression of dystrophic features and activation of mitogen-activated protein kinases and calcineurin by physical exercise, in hearts of mdx mice. FEBS Lett 2002; 520: 18–24.

    CAS  PubMed  Google Scholar 

  130. Deconinck AE et al. Utrophin–dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 1997; 90: 717–727.

    CAS  PubMed  Google Scholar 

  131. Ding Z et al. A minimally invasive approach for efficient gene delivery to rodent hearts. Gene Therapy 2004; 11: 260–265.

    CAS  PubMed  Google Scholar 

  132. Greelish JP et al. Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated vector. Nat Med 1999; 5: 439–443.

    CAS  PubMed  Google Scholar 

  133. Zhang G et al. Hydroporation as the mechanism of hydrodynamic delivery. Gene Therapy 2004; 11: 675–682.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Crosbie RH et al. Characterization of aquaporin-4 in muscle and muscular dystrophy. FASEB J 2002; 16: 943–949.

    CAS  PubMed  Google Scholar 

  135. Zhang YC et al. Immunity to adeno-associated virus serotype 2 delivered transgenes imparted by genetic predisposition to autoimmunity. Gene Therapy 2004; 11: 233–240.

    CAS  PubMed  Google Scholar 

  136. Wright JF, Qu G, Tang CL, Sommer JM . Recombinant adeno-associated virus: formulation challenges and strategies for a gene therapy vector. Curr Opin Drug Discov Dev 2003; 6: 174–178.

    CAS  Google Scholar 

  137. Liu YL et al. Optimized production of high-titer recombinant adeno-associated virus in roller bottles. Biotechniques 2003; 34: 184–188.

    CAS  PubMed  Google Scholar 

  138. Sollerbrant K et al. A novel method using baculovirus-mediated gene transfer for production of recombinant adeno-associated virus vectors. J Gen Virol 2001; 82: 2051–2060.

    CAS  PubMed  Google Scholar 

  139. Urabe M, Ding CT, Kotin RM . Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 2002; 13: 1935–1943.

    CAS  PubMed  Google Scholar 

  140. Whiteway A, Deru W, Prentice HG, Anderson R . Construction of adeno-associated virus packaging plasmids and cells that directly select for AAV helper functions. J Virol Methods 2003; 114: 1–10.

    CAS  PubMed  Google Scholar 

  141. Zolotukhin S et al. Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 2002; 28: 158–167.

    CAS  PubMed  Google Scholar 

  142. Gao GP et al. Purification of recombinant adeno-associated virus vectors by column chromatography and its performance in vivo. Hum Gene Ther 2000; 11: 2079–2091.

    CAS  PubMed  Google Scholar 

  143. Grimm D . Production methods for gene transfer vectors based on adeno-associated virus serotypes. Methods 2002; 28: 146–157.

    CAS  PubMed  Google Scholar 

  144. Grimm D, Kay MA, Kleinschmidt JA . Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther 2003; 7: 839–850.

    CAS  PubMed  Google Scholar 

  145. Kaludov N, Handelman B, Chiorini JA . Scalable purification of adeno-associated virus type 2, 4, or 5 using ion-exchange chromatography. Hum Gene Ther 2002; 13: 1235–1243.

    CAS  PubMed  Google Scholar 

  146. O’Riordan CR, Lachapelle AL, Vincent KA, Wadsworth SC . Scaleable chromatographic purification process for recombinant adeno-associated virus (rAAV). J Gen Med 2000; 2: 444–454.

    Google Scholar 

  147. Smith RH, Ding CT, Kotin RM . Serum-free production and column purification of adeno-associated virus type 5. J Virol Methods 2003; 114: 115–124.

    CAS  PubMed  Google Scholar 

  148. Wright VJ, Peng HR, Huard J . Muscle-based gene therapy and tissue engineering for the musculoskeletal system. Drug Discov Today 2001; 6: 728–733.

    CAS  PubMed  Google Scholar 

  149. Arakawa M et al. Negamycin restores dystrophin expression in skeletal and cardiac muscles of mdx mice. J Biochem 2003; 134: 751–758.

    CAS  PubMed  Google Scholar 

  150. Ferrer A et al. Long-term expression of full-length human dystrophin in transgenic mdx mice expressing internally deleted human dystrophins. Gene Therapy 2004; 11: 884–893.

    CAS  PubMed  Google Scholar 

  151. Gregorevic P et al. Systematic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 2004; 10: 828–834.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kaiser J . Side effects sideline hemophilia trial. Science 2004; 304: 1423–1424.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Muscular Dystrophy Campaign (MDC), UK and the Association Francaise Contres les Myopathies (AFM) for funding and support. We also thank J Harris for critically reviewing this manuscript and M Mezzina for the invitation to contribute.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Athanasopoulos, T., Graham, I., Foster, H. et al. Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD). Gene Ther 11 (Suppl 1), S109–S121 (2004). https://doi.org/10.1038/sj.gt.3302379

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302379

Keywords

This article is cited by

Search

Quick links