Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Ultraviolet light selection assay to optimize oligonucleotide correction of mutations in endogenous xeroderma pigmentosum genes

Abstract

Various oligonucleotide (ODN)-based approaches have been proposed for their ability to correct mutated genes at the normal chromosomal locations. However, the reported gene correction frequencies of these approaches have varied markedly in different experimental settings, including when different tissues or cell types are targeted. In order to find the optimal ODN-based approach for a specific target tissue, an assay system that allows direct comparison of the different methods on that tissue is necessary. Herein, we describe an XP-UVC selection assay that can be used to evaluate and compare gene correction frequencies in different cell types obtained from a xeroderma pigmentosum (XP) patient, following treatment by different ODN-based approaches. As an experimental example, the XP-UVC selection assay was used to assess the ability of chimeric RNA/DNA ODN to correct point mutations in the XPA gene. This assay can be used to assess and evaluate other types of ODN-based approaches, and to further optimize them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 1
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Liu CM, Liu DP, Liang CC . Oligonucleotide-mediated gene repair at DNA level: the potential applications for gene therapy. J Mol Med 2002; 80: 620–628.

    Article  CAS  Google Scholar 

  2. Andersen MS, Sorensen CB, Bolund L, Jensen TG . Mechanisms underlying targeted gene correction using chimeric RNA/DNA and single-stranded DNA oligonucleotides. J Mol Med 2002; 80: 770–781.

    Article  CAS  Google Scholar 

  3. Nickerson HD, Colledge WH . A comparison of gene repair strategies in cell culture using a lacZ reporter system. Gene Therapy 2003; 10: 1584–1591.

    Article  CAS  Google Scholar 

  4. van der Steege G et al. Persistent failures in gene repair. Nat Biotechnol 2001; 19: 305–306.

    Article  CAS  Google Scholar 

  5. Graham IR et al. Gene repair validation. Nat Biotechnol 2001; 19: 507–508.

    Article  CAS  Google Scholar 

  6. Diaz-Font A et al. Unsuccessful chimeraplast strategy for the correction of a mutation causing Gaucher disease. Blood Cells Mol Dis 2003; 31: 183–186.

    Article  CAS  Google Scholar 

  7. Zhang Z et al. Failure to achieve gene conversion with chimeric circular oligonucleotides: potentially misleading PCR artifacts observed. Antisense Nucleic Acid Drug Dev 1998; 8: 531–536.

    Article  CAS  Google Scholar 

  8. Moriwaki S, Kraemer KH . Xeroderma pigmentosum – bridging a gap between clinic and laboratory. Photodermatol Photoimmunol Photomed 2001; 17: 47–54.

    Article  CAS  Google Scholar 

  9. Friedberg EC . Xeroderma pigmentosum, Cockayne's syndrome, helicases, and DNA repair: what's the relationship? Cell 1992; 71: 887–889.

    Article  CAS  Google Scholar 

  10. Hoeijmakers JH . Human nucleotide excision repair syndromes: molecular clues to unexpected intricacies. Eur J Cancer 1994; 30A: 1912–1921.

    Article  CAS  Google Scholar 

  11. Hanawalt PC . Transcription-coupled repair and human disease. Science 1994; 266: 1957–1958.

    Article  CAS  Google Scholar 

  12. Sancar A . Mechanisms of DNA excision repair. Science 1994; 266: 1954–1956.

    Article  CAS  Google Scholar 

  13. van Steeg H, Kraemer KH . Xeroderma pigmentosum and the role of UV-induced DNA damage in skin cancer. Mol Med Today 1999; 5: 86–94.

    Article  CAS  Google Scholar 

  14. Levy DD, Saijo M, Tanaka K, Kraemer KH . Expression of a transfected DNA repair gene (XPA) in xeroderma pigmentosum group A cells restores normal DNA repair and mutagenesis of UV-treated plasmids. Carcinogenesis 1995; 16: 1557–1563.

    Article  CAS  Google Scholar 

  15. Jones CJ, Wood RD . Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry 1993; 32: 12096–12104.

    Article  CAS  Google Scholar 

  16. Miyamoto I et al. Mutational analysis of the structure and function of the xeroderma pigmentosum group A complementing protein. Identification of essential domains for nuclear localization and DNA excision repair. J Biol Chem 1992; 267: 12182–12187.

    CAS  PubMed  Google Scholar 

  17. States JC, Myrand SP . Splice site mutations in a xeroderma pigmentosum group A patient with delayed onset of neurological disease. Mutat Res 1996; 363: 171–177.

    Article  Google Scholar 

  18. Satokata I et al. Genomic characterization of the human DNA excision repair-controlling gene XPAC. Gene 1993; 136: 345–348.

    Article  CAS  Google Scholar 

  19. Satokata I, Tanaka K, Okada Y . Molecular basis of group A xeroderma pigmentosum: a missense mutation and two deletions located in a zinc finger consensus sequence of the XPAC gene. Hum Genet 1992; 88: 603–607.

    Article  CAS  Google Scholar 

  20. Kraemer KH et al. Effects of 8-methoxypsoralen and ultraviolet radiation on human lymphoid cells in vitro. J Invest Dermatol 1981; 76: 80–87.

    Article  CAS  Google Scholar 

  21. Kraemer KH, Waters HL . Effects of psoralens plus ultraviolet radiation on human lymphoid cells in vitro. Natl Cancer Inst Monogr 1984; 66: 221–223.

    CAS  PubMed  Google Scholar 

  22. Satokata I et al. Three nonsense mutations responsible for group A xeroderma pigmentosum. Mutat Res 1992; 273: 193–202.

    Article  CAS  Google Scholar 

  23. Yoon K, Cole-Strauss A, Kmiec EB . Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA. DNA oligonucleotide. Proc Natl Acad Sci USA 1996; 93: 2071–2076.

    Article  CAS  Google Scholar 

  24. Cole-Strauss A et al. Correction of the mutation responsible for sickle cell anemia by an RNA–DNA oligonucleotide. Science 1996; 273: 1386–1389.

    Article  CAS  Google Scholar 

  25. Rice MC et al. Isolation of human and mouse genes based on homology to REC2, a recombinational repair gene from the fungus Ustilago maydis. Proc Natl Acad Sci USA 1997; 94: 7417–7422.

    Article  CAS  Google Scholar 

  26. Modrich P, Lahue R . Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 1996; 65: 101–133.

    Article  CAS  Google Scholar 

  27. Kolodner R . Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev 1996; 10: 1433–1442.

    Article  CAS  Google Scholar 

  28. Pierce EA et al. Oligonucleotide-directed single-base DNA alterations in mouse embryonic stem cells. Gene Therapy 2003; 10: 24–33.

    Article  CAS  Google Scholar 

  29. Alexeev V, Igoucheva O, Yoon K . Simultaneous targeted alteration of the tyrosinase and c-kit genes by single-stranded oligonucleotides. Gene Therapy 2002; 9: 1667–1675.

    Article  CAS  Google Scholar 

  30. Emmert S, Kobayashi N, Khan SG, Kraemer KH . The xeroderma pigmentosum group C gene leads to selective repair of cyclobutane pyrimidine dimers rather than 6-4 photoproducts. Proc Natl Acad Sci USA 2000; 97: 2151–2156.

    Article  CAS  Google Scholar 

  31. Protic-Sabljic M, Kraemer KH . One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells. Proc Natl Acad Sci USA 1985; 82: 6622–6626.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terunuma, A., Ye, J., Emmert, S. et al. Ultraviolet light selection assay to optimize oligonucleotide correction of mutations in endogenous xeroderma pigmentosum genes. Gene Ther 11, 1729–1734 (2004). https://doi.org/10.1038/sj.gt.3302344

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302344

Keywords

This article is cited by

Search

Quick links