Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Robust functional gene validation by adenoviral vectors: one-step Escherichia coli-Derived Recombinant Adenoviral Genome construction

Abstract

We describe here a clonal approach for efficient and robust construction of recombinant adenoviral genomes that holds certain advantages over existing approaches. Transgenes of interest are cloned into a small, conditionally replicating plasmid containing the left end of a recombinant adenoviral genome, encompassing pIX coding regions. Transformation of this plasmid into recombination-competent Escherichia coli bearing a plasmid containing the right end of a recombinant adenoviral genome, commencing from pIX coding regions, yields a stable co-integrated plasmid encoding a full adenoviral genome, by virtue of shared homology in pIX coding regions contained in both plasmids. The recombination process yielding the full adenoviral plasmid requires only one step, and always results in the formation of only the desired recombinant adenoviral genome. Thus, no screening is required to identify the correct plasmid encoding the desired recombinant adenoviral genome. In addition, the plasmid encoding the right-hand side of the adenoviral genome is itself incapable of producing contaminating adenovirus. We have successfully employed this approach to generate over 200 recombinant adenoviruses, obtaining only the desired recombinant adenoviral species each time. The process is amenable to medium-to-high-throughput parallel construction of adenoviral genomes, and as such should aid efforts aimed towards high-throughput functional annotation of therapeutic gene targets, which aim to leverage the benefits of adenoviruses as gene delivery and expression vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Russell WC . Update on adenovirus and its vectors. J Gen Virol 2000; 81: 2573–2604.

    Article  CAS  PubMed  Google Scholar 

  2. Xia H, Mao Q, Paulson HL, Davidson BL . siRNA-mediated gene silencing in vitro and in vivo. Nat Biotech 2002; 20: 1006–1010.

    Article  CAS  Google Scholar 

  3. Arts G-J et al. Adenoviral vectors expressing siRNAs for discovery and validation of gene function. Genome Res 2003; 13: 2325–2332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miyake S et al. Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome. Proc Natl Acad Sci USA 1996; 93: 1320–1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mizuguchi H, Kay MA . Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method. Hum Gene Ther 1998; 9: 2577–2583.

    Article  CAS  PubMed  Google Scholar 

  6. Moraes MP, Mayr GA, Grubman MJ . pAd5-Blue: direct ligation system for engineering recombinant adenovirus constructs. BioTechniques 2001; 31: 1050–1056.

    Article  CAS  PubMed  Google Scholar 

  7. Gao G et al. High throughput creation of recombinant adenovirus vectors by direct cloning, green–white selection and I-Sce I-mediated rescue of circular adenovirus plasmids in 293 cells. Gene Therapy 2003; 10: 1926–1930.

    Article  CAS  PubMed  Google Scholar 

  8. McVey D, Zuber M, Brough DE, Kovesdi I . Adenovirus vector library: an approach to the discovery of gene and protein function. J Gen Virol 2003; 84: 3417–3422.

    Article  CAS  PubMed  Google Scholar 

  9. Chartier C et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J Virol 1996; 70: 4805–4810.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Crouzet J et al. Recombinational construction in Escherichia coli of infectious adenoviral genomes. Proc Natl Acad Sci USA 1997; 94: 1414–1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He T-C et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bett AJ, Haddara W, Prevec L, Graham FL . An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci USA 1994; 91: 8802–8806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hardy S et al. Construction of adenovirus vectors through Cre–lox recombination. J Virol 1997; 71: 1842–1849.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Michiels F et al. Arrayed adenoviral expression libraries for functional screening. Nat Biotech 2002; 20: 1154–1157.

    Article  CAS  Google Scholar 

  15. Elahi SM et al. Adenovirus-based libraries: efficient generation of recombinant adenovirus by positive selection with the adenovirus protease. Gene Therapy 2002; 9: 1238–1246.

    Article  CAS  PubMed  Google Scholar 

  16. Hatanaka K et al. A simple and efficient method for constructing an adenoviral cDNA expression library. Mol Ther 2003; 8: 158–166.

    Article  CAS  PubMed  Google Scholar 

  17. Ketner G et al. Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone. Proc Natl Acad Sci USA 1994; 91: 6186–6190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hokanson CA et al. Hybrid yeast–bacteria cloning system used to capture and modify adenoviral and nonviral genomes. Hum Gene Therapy 2003; 14: 329–339.

    Article  CAS  Google Scholar 

  19. Fallaux FJ et al. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther 1998; 9: 1909–1917.

    Article  CAS  PubMed  Google Scholar 

  20. Davison AJ, Benko M, Harrach B . Genetic content and evolution of adenoviruses. J Gen Virol 2003; 84: 2895–2908; (GenBank accession number for human Ad5 is BK000408).

    Article  CAS  PubMed  Google Scholar 

  21. Stalker DM, Kolter R, Helinski DR . Plasmid R6K DNA replication. I. Complete nucleotide sequence of an autonomously replicating segment. J Mol Biol 1982; 161: 33–43.

    Article  CAS  PubMed  Google Scholar 

  22. Filutowicz M, Rakowski SA . Regulatory implications of protein assemblies at the gamma origin of plasmid R6K – a review. Gene 1998; 223: 195–204.

    Article  CAS  PubMed  Google Scholar 

  23. Robert JJ et al. Degnerated pIX-IVa2 adenoviral vector sequences lowers reacquisition of the E1 genes during virus amplification in 293 cells. Gene Therapy 2001; 8: 1713–1720.

    Article  CAS  PubMed  Google Scholar 

  24. Yeh P et al. Efficient dual trans-complementation of adenovirus E1 and E4 regions from a 293-derived cell line expressing a minimal E4-functional unit. J Virol 1996; 70: 559–565.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dedieu JF et al. Long-term gene delivery into the livers of immunocompetent mice with E1/E4-defective adenoviruses. J Virol 1997; 71: 4626–4637.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Louis N, Evelegh C, Graham FL . Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line. Virology 1997; 233: 423–429.

    Article  CAS  PubMed  Google Scholar 

  27. Blanche F et al. An improved anion-exchange HPLC method for the detection and purification of adenoviral particles. Gene Therapy 2000; 12: 1055–1062.

    Article  Google Scholar 

  28. Vigne E et al. Genetic manipulations of adenovirus type 5 fiber resulting in liver tropism attenuation. Gene Therapy 2003; 10: 153–162.

    Article  CAS  PubMed  Google Scholar 

  29. Sambrook J, Russell DW . Molecular Cloning: A Laboratory Manual. CSHL Press: New York, 2001.

  30. Bloomfield IC, Vaughn V, Rest RF, Eisenstein BI . Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol Microbiol 1991; 5: 1447–1457.

    Article  Google Scholar 

  31. Gay P et al. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol 1985; 164: 918–921.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Oka A, Sugisaki H, Takanami M . Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol 1981; 147: 217–226.

    Article  CAS  PubMed  Google Scholar 

  33. Grindley ND, Joyce CM . Analysis of the structure and function of the kanamycin-resistance transposon Tn903. Cold Spring Harb Symp Quant Biol 1981; 45: 125–133.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Centre National de la Recherche Scientifique and the European Union Marie Curie Fellowship Programme in carrying out this study. We are also grateful to Patrice Yeh for reviewing the manuscript prior to submission.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullan, B., Dugué, C., Moutard, V. et al. Robust functional gene validation by adenoviral vectors: one-step Escherichia coli-Derived Recombinant Adenoviral Genome construction. Gene Ther 11, 1599–1605 (2004). https://doi.org/10.1038/sj.gt.3302333

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302333

Keywords

This article is cited by

Search

Quick links