Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Specific targeted binding of herpes simplex virus type 1 to hepatocytes via the human hepatitis B virus preS1 peptide

Abstract

To improve the utility of herpes simplex virus type 1 (HSV-1) vectors for gene therapy, the viral envelope needs to be manipulated to achieve cell-specific gene delivery. In this report, we have engineered an HSV-1 mutant virus, KgBpK gC, deleted for the glycoprotein C (gC) and the heparan sulfate-binding domain (pK) of gB, in order to express gC:preS1 and gC:preS1 active peptide (preS1ap) fusion molecules. PreS1, and a 27 amino acid active peptide inside preS1 (preS1ap), are supposed to be the molecules that the human hepatitis B virus (HBV) needs to bind specifically to hepatocytes. Biochemical analysis demonstrated that the gC:preS1ap fusion molecule was expressed and incorporated into the envelope of the recombinant HSV-1 virus KgBpKgC:preS1ap. Moreover, KgBpKgC:preS1ap recombinant virus gained a specific binding activity to an hepatoblastoma cell line (HepG2) with a consequent productive infection. In addition, anti-preS1-specific antibodies were shown to neutralize recombinant virus infectivity, and a synthetic preS1ap peptide was able to elute KgBpKgC:preS1ap virus bound on HpeG2 cells. These data provide further evidence that HSV-1 can productively infect cells through a specific binding to a non-HSV-1 receptor. Furthermore, these data strongly support the hypothesis that the HBV preS1ap molecule is an HBV ligand to hepatocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kay MA, Glorioso JC, Naldini L . Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7: 33–40.

    Article  CAS  PubMed  Google Scholar 

  2. Kootstra NA, Verma IM . Gene therapy with viral vectors. Annu Rev Pharmacol Toxicol 2003; 43: 413–439.

    Article  CAS  PubMed  Google Scholar 

  3. Lundstrom K . Latest development in viral vectors for gene therapy. Trends Biotechnol 2003; 21: 117–122.

    Article  CAS  PubMed  Google Scholar 

  4. Mah C, Byrne BJ, Flotte TR . Virus-based gene delivery systems. Clin Pharmacokinet 2002; 41: 901–911.

    Article  CAS  PubMed  Google Scholar 

  5. Robbins PD, Tahara H, Ghivizzani SC . Viral vectors for gene therapy. Trends Biotechnol 1998; 16: 35–40.

    Article  CAS  PubMed  Google Scholar 

  6. Advani SJ, Weichselbaum RR, Whitley RJ, Roizman B . Friendly fire: redirecting herpes simplex virus-1 for therapeutic applications. Clin Microbiol Infect 2002; 8: 551–563.

    Article  CAS  PubMed  Google Scholar 

  7. Anderson DB et al. Pseudotyping of glycoprotein D-deficient herpes simplex virus type 1 with vesicular stomatitis virus glycoprotein G enables mutant virus attachment and entry. J Virol 2000; 74: 2481–2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burton EA, Bai Q, Goins WF, Glorioso JC . Targeting gene expression using HSV vectors. Adv Drug Deliv Rev 2001; 53: 155–170.

    Article  CAS  PubMed  Google Scholar 

  9. Douglas JT . Targeted gene delivery by tropism-modified adenoviral vectors. Nat Biotechnol 1996; 14: 1574–1578.

    Article  CAS  PubMed  Google Scholar 

  10. Han X, Kasahara N, Kan YW . Ligand-directed retroviral targeting of human breast cancer cells. Proc Natl Acad Sci USA 1995; 92: 9747–9751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Laquerre S, Anderson DB, Stolz DB, Glorioso JC . Recombinant herpes simplex virus type 1 engineered for targeted binding to erythropoietin receptor-bearing cells. J Virol 1998; 72: 9683–9697.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nicklin SA, Baker AH . Tropism-modified adenoviral and adeno-associated viral vectors for gene therapy. Curr Gene Ther 2002; 2: 273–293.

    Article  CAS  PubMed  Google Scholar 

  13. Valsesia-Wittmann S et al. Modification in the binding domain of avian retrovirus envelope protein to redirect the host range of retroviral vectors. J Virol 1994; 68: 4609–4619.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Aw MM, Dhawan A . Acute liver failure. Indian J Pediatr 2002; 69: 87–91.

    Article  PubMed  Google Scholar 

  15. Clayton PT . Inborn errors presenting with liver dysfunction. Semin Neonatol 2002; 7: 49–63.

    Article  PubMed  Google Scholar 

  16. Stecenko AA, Brigham KL . Gene therapy progress and prospects: alpha-1 antitrypsin. Gene Therapy 2003; 10: 95–99.

    Article  CAS  PubMed  Google Scholar 

  17. Kobayashi S et al. Gene transfer into the liver by plasmid injection into the portal vein combined with electroporation. J Gene Med 2003; 5: 201–208.

    Article  CAS  PubMed  Google Scholar 

  18. Cheung ST et al. Liver as an ideal target for gene therapy: expression of CTLA4Ig by retroviral gene transfer. J Gastroenterol Hepatol 2002; 17: 1008–1014.

    Article  CAS  PubMed  Google Scholar 

  19. Ferry N, Heard JM . Liver-directed gene transfer vectors. Hum Gene Ther 1998; 9: 1975–1981.

    Article  CAS  PubMed  Google Scholar 

  20. Fong Y et al. Rapid and efficient gene transfer in human hepatocytes by herpes viral vectors. Hepatology 1995; 22: 723–729.

    CAS  PubMed  Google Scholar 

  21. Forbes SJ et al. Retroviral gene transfer to the liver in vivo during tri-iodothyronine inducing hyperplasia. Gene Therapy 1998; 5: 552–555.

    Article  CAS  PubMed  Google Scholar 

  22. Fraefel C et al. Gene transfer into hepatocytes mediated by helper virus-free HSV/AAV hybrid vectors. Mol Med 1997; 3: 813–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guha C, Roy-Chowdhury N, Jauregui H, Roy-Chowdhury J . Hepatocyte-based gene therapy. J Hepatobiliary Pancreat Surg 2001; 8: 51–57.

    Article  CAS  PubMed  Google Scholar 

  24. Gupta S, Malhi H, Gagandeep S, Novikoff P . Liver repopulation with hepatocyte transplantation: new avenues for gene and cell therapy. J Gene Med 1999; 1: 386–392.

    Article  CAS  PubMed  Google Scholar 

  25. Ido A et al. Gene therapy targeting for hepatocellular carcinoma: selective and enhanced suicide gene expression regulated by o hypoxia-inducible enhancer linked to a human á-fetoprotein promoter. Cancer Res 2001; 61: 3016–3021.

    CAS  PubMed  Google Scholar 

  26. Jarnagin WR et al. Neoadjuvant treatment of hepatic malignancy: an oncolytic herpes simplex virus expressing IL-12 effectively treats the parent tumor and protects against recurrence-after resection. Cancer Gene Ther 2003; 10: 215–223.

    Article  CAS  PubMed  Google Scholar 

  27. Kosai KI et al. Retrovirus-mediated in vivo gene transfer in the replicating liver using recombinant hepatocyte growth factor without liver injury or partial hepatectomy. Hum Gene Ther 1998; 9: 1293–1301.

    Article  CAS  PubMed  Google Scholar 

  28. Kren BT, Chowdhury NR, Chowdhury JR, Steer CJ . Gene therapy as an alternative to liver transplantation. Liver Transplant 2002; 8: 1098–1108.

    Article  Google Scholar 

  29. Lu B, Gupta S, Federoff H . Ex vivo hepatic gene transfer in mouse using a defective herpes simplex virus-1 vector. Hepatology 1995; 21: 752–759.

    CAS  PubMed  Google Scholar 

  30. Pichard V, Aubert D, Ferry N . Efficient retroviral gene transfer to the liver in vivo using nonpolypeptidic mitogens. Biochem Biophys Res Commun 2001; 286: 929–935.

    Article  CAS  PubMed  Google Scholar 

  31. Fraefel C, Jacoby DR, Breakefield XO . Herpes simplex virus type 1-based amplicon vector systems. Adv Virus Res 2000; 55: 425–451.

    Article  CAS  PubMed  Google Scholar 

  32. Glorioso JC et al. Engineering herpes simplex virus vectors for human gene therapy. Adv Pharmacol 1997; 40: 103–136.

    Article  CAS  PubMed  Google Scholar 

  33. Latchman DS . Gene delivery and gene therapy with herpes simplex virus-based vectors. Gene 2001; 264: 1–9.

    Article  CAS  PubMed  Google Scholar 

  34. Link CJ, Vahanian NN, Wang S . Herpes simplex amplicon vectors. Methods Mol Med 2003; 76: 61–87.

    CAS  PubMed  Google Scholar 

  35. Burton EA, Bai Q, Goins WF, Glorioso JC . Replication-defective genomic herpes simplex vectors: design and production. Curr Opin Biotechnol 2002; 13: 424–428.

    Article  CAS  PubMed  Google Scholar 

  36. Krisky DM et al. Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications. Gene Therapy 1998; 5: 1517–1530.

    Article  CAS  PubMed  Google Scholar 

  37. Krisky DM et al. Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Therapy 1998; 5: 1593–1603.

    Article  CAS  PubMed  Google Scholar 

  38. Chung SM et al. The use of a genetically engineered herpes simplex virus (R7020) with ionizing radiation for experimental hepatoma. Gene Therapy 2002; 9: 75–80.

    Article  CAS  PubMed  Google Scholar 

  39. Markovitz NS, Roizman B . Replication-competent herpes simplex viral vectors for cancer therapy. Adv Virus Res 2000; 55: 409–424.

    Article  CAS  PubMed  Google Scholar 

  40. Pawlik TM et al. Prodrug bioactivation and oncolysis of diffuse liver metastases by a herpes simplex virus 1 mutant that expresses the CYP2B1 transgene. Cancer 2002; 95: 1171–1181.

    Article  CAS  PubMed  Google Scholar 

  41. Smith ER, Chiocca EA . Oncolytic viruses as novel anticancer agents: turning one scourge against another. Expert Opin Invest Drugs 2000; 9: 311–327.

    Article  CAS  Google Scholar 

  42. Laquerre S et al. Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contribution to virus attachment, penetration, and cell-to-cell spread. J Virol 1998; 72: 6119–6130.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shukla D et al. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 1999; 99: 13–22.

    Article  CAS  PubMed  Google Scholar 

  44. Montgomery RI, Warner MS, Brian JL, Spear PG . Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 1996; 87: 427–436.

    Article  CAS  PubMed  Google Scholar 

  45. Krummenacher C et al. The first immunoglobulin-like domain of HveC is sufficient to bind herpes simplex virus gD with full affinity, while the third domain is involved in oligomerization of HveC. J Virol 1999; 73: 8127–8137.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cai W, Gu B, Person S . Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. J Virol 1988; 62: 2596–2604.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Desai P, Homa FL, Person S, Glorioso JC . Excretion of non-infectious virus particles lacking glycoprotein H by a temperature-sensitive mutant of herpes simplex virus type 1: evidence that gH is essential for virion infectivity. J Virol 1988; 69: 1147–1156.

    Article  CAS  Google Scholar 

  48. Dingwell KS et al. Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junction of cultured cells. J Virol 1994; 68: 834–845.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ligas MW, Johnson DC . A herpes simplex virus mutant in which glycoprotein D sequences are replaced by β-galactosidase sequences binds to but is unable to penetrate into cells. J Virol 1988; 62: 1486–1494.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Roop C, Hutchinson L, Johnson DC . A mutant herpes simplex virus type 1 unable to express glycoprotein L cannot enter cells, and its particles lack glycoprotein H. J Virol 1993; 67: 2285–2297.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Neurath AR, Kent SB, Strick N, Parker K . Identification and chemical synthesis of a host cell receptor binding site on hepatitis B virus. Cell 1986; 46: 429–436.

    Article  CAS  PubMed  Google Scholar 

  52. Neurath AR, Strick N . The putative cell receptor for hepatitis B virus (HBV), annexin V, and apolipoprotein H, bind to lipid components of HBV. Virology 1994; 204: 475–477.

    Article  CAS  PubMed  Google Scholar 

  53. Petit MA et al. HepG2 cell binding activities of different hepatitis B virus isolates: inhibitory effect of anti-HBs and anti-preS1 (21-47). Virology 1991; 180: 483–491.

    Article  CAS  PubMed  Google Scholar 

  54. Petit MA, Capel F, Dubanchet S, Mabit H . PreS1-specific binding proteins as potential receptors for hepatitis B virus in human hepatocytes. Virology 1992; 187: 211–222.

    Article  CAS  PubMed  Google Scholar 

  55. Fink RJ, Eisenberg RJ, Cohen GH, Wagner EK . Detailed analysis of the portion of the herpes simplex virus type 1 genome encoding glycoprotein C. J Virol 1983; 45: 634–647.

    Google Scholar 

  56. Mardberg K, Trybala E, Glorioso JC, Bergstrom T . Mutational analysis of heparan sulfate-binding domain of herpes simplex virus type 1 glycoprotein C. J Gen Virol 2001; 82: 1941–1950.

    Article  CAS  PubMed  Google Scholar 

  57. Dolter KE, King SR, Holland TC . Incorporation of CD4 into virions by recombinant herpes simplex virus. J Virol 1993; 67: 189–195.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou G, Ye GJ, Debinski W, Roizman B . Engineered herpes simplex virus 1 is dependent on IL13Rα2 receptor for cell entry and independent of glycoprotein D receptor interactions. Proc Natl Acad Sci USA 2002; 99: 15124–15129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dutch RE, Bagai Joshi S, Lamb RA . Membrane fusion promoted by increasing surface densities of the paramyxovirus F and HN proteins: comparison of fusion reactions mediated by simian virus 5 F, human parainfluenza virus type 3 F, and influenza virus HA. J Virol 1988; 72: 7745–7753.

    Google Scholar 

  60. Takai E et al. A solid-phase enzyme immunoassay for the determination of IgM and IgG antibodies against translation products of pre-S1 and pre-S2 regions of hepatitis B virus. J Immunol Methods 1986; 95: 23–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Joseph Glorioso for critical reading of the paper. This work was supported by the European commission (Quality of Life, QLK2-CT-1999-00055), and grants from Ministero della Sanità – National Program on AIDS (no. 40D.55) and MIUR-FIRB-2001 (RBNE0127YS_002).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argnani, R., Boccafogli, L., Marconi, P. et al. Specific targeted binding of herpes simplex virus type 1 to hepatocytes via the human hepatitis B virus preS1 peptide. Gene Ther 11, 1087–1098 (2004). https://doi.org/10.1038/sj.gt.3302266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302266

Keywords

This article is cited by

Search

Quick links