Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Foamy virus–adenovirus hybrid vectors

Abstract

To confer adenovirus vectors (AdV), the feature of integration into the host cell genome hybrid vectors were characterized in vitro, which express vectors derived from the prototypic foamy virus (FV) in the backbone of a high-capacity AdV. FVs constitute a subfamily of retroviruses with a distinct replication pathway and no known pathogenicity. In the absence of envelope glycoprotein, the prototypic FV behaves like a retrotransposon, while it behaves like an exogenous retrovirus in its presence. Two principle types of vectors, which either allows the intracellular (HC-FAD-7) or, in addition, the extracellular (HC-FAD-2) pathway were constructed. In both chimeras the expression of the FV vector was controlled by the tetracycline-regulatable system. Hybrids were produced close to 1010 infectious units/ml. By Southern blotting, the functionality of the hybrid vectors to generate host cell genomic integrants was shown. However, the efficiency of HC-FAD-7 to establish stable transgene expression was rather low, while around 70% of cells were stably transduced in secondary round following primary transduction with HC-FAD-2 at an MOI of 100. Given the benign characteristics of high-capacity adenovirus and FV vectors, hybrids based on HC-FAD-2 are probably suited for an in vivo application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Verma IM, Somia N . Gene therapy. Nature 1997; 389: 239–242.

    Article  CAS  PubMed  Google Scholar 

  2. Blau H, Khavari P . Gene therapy: progress, problems, prospects. Nat Med 1997; 3: 612–613.

    Article  CAS  PubMed  Google Scholar 

  3. Kochanek S et al. A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and β-galactosidase. Proc Natl Acad Sci (USA) 1996; 93: 5731–5736.

    Article  CAS  Google Scholar 

  4. Kreppel F et al. Long-term transgene expression in the RPE after gene transfer with a high-capacity adenoviral vector. Invest Ophthamol Vis Sci 2002; 43: 1965–1970.

    Google Scholar 

  5. Schiedner G et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet 1998; 18: 180–183.

    Article  CAS  PubMed  Google Scholar 

  6. ICTV. The International Committee on Taxonomy of Viruses. see: http://www.danforthcenter.org/iltab/ICTVnet〉 2002.

  7. Linial ML . Foamy viruses are unconventional retroviruses. J Virol 1999; 73: 1747–1755.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rethwilm A . The replication strategy of foamy viruses. Curr Top Microbiol Immunol 2003; 277: 1–26.

    CAS  PubMed  Google Scholar 

  9. Heinkelein M et al. Improved primate foamy virus vectors and packaging constructs. J Virol 2002; 76: 3774–3783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Trobridge G et al. Improved foamy virus vectors with minimal viral sequences. Mol Ther 2002; 6: 321–328.

    Article  CAS  PubMed  Google Scholar 

  11. Heinkelein M et al. Efficient intracellular retrotransposition of an exogenous primate retrovirus genome. EMBO J 2000; 19: 3436–3445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baunach G et al. Functional analysis of human foamy virus accessory reading frames. J Virol 1993; 67: 5411–5418.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Erlwein O, Rethwilm A . BEL-1 transactivator responsive sequences in the long terminal repeat of human foamy virus. Virology 1993; 196: 256–268.

    Article  CAS  PubMed  Google Scholar 

  14. Keller A et al. Characterization of the transcriptional transactivator of human foamy retrovirus. J Virol 1991; 65: 2589–2594.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rethwilm A et al. The transcriptional transactivator of human foamy virus maps to the bel 1 genomic region. Proc Natl Acad Sci USA 1991; 88: 941–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fischer N et al. Foamy virus particle formation. J Virol 1998; 72: 1610–1615.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pietschmann T et al. Foamy virus capsids require the cognate envelope protein for particle export. J Virol 1999; 73: 2613–2621.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu SF et al. Human foamy virus replication: a pathway distinct from that of retroviruses and hepadenoviruses. Science 1996; 271: 1579–1582.

    Article  CAS  PubMed  Google Scholar 

  19. Enssle J, Jordan I, Mauer B, Rethwilm A . Foamy virus reverse transcriptase is expressed independently from the Gag protein. Proc Natl Acad Sci USA 1996; 93: 4137–4141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kreppel F, Biermann V, Kochanek S, Schiedner G . A DNA-based method to assay total and infectious particle contents and helper virus contamination in high-capacity adenoviral vector preparations. Hum Gene Ther 2002; 13: 1151–1156.

    Article  CAS  PubMed  Google Scholar 

  21. Dinser R et al. Comparison of long-term transgene expression after non-viral and adenoviral gene transfer into primary articular chondrocytes. Histochem Cell Biol 2001; 116: 69–77.

    CAS  PubMed  Google Scholar 

  22. Hahn H et al. Reactivity of primate sera to foamy virus gag and bet proteins. J Gen Virol 1994; 75: 2635–2644.

    Article  CAS  PubMed  Google Scholar 

  23. Lindemann D et al. A particle-associated glycoprotein signal peptide essential for virus maturation and infectivity. J Virol 2001; 75: 5762–5771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitani K, Kubo S . Adenovirus as an integrating vector. Curr Gene Ther 2002; 2: 135–144.

    Article  CAS  PubMed  Google Scholar 

  25. Bilbao G et al. Adenoviral/retroviral vector chimeras: a novel strategy to achieve high-efficiency stable transduction in vivo. FASEB J 1997; 11: 624–634.

    Article  CAS  PubMed  Google Scholar 

  26. Caplen NJ et al. Adeno-retroviral chimeric viruses as in vivo transducing agents. Gene Therapy 1999; 6: 454–459.

    Article  CAS  PubMed  Google Scholar 

  27. Feng M et al. Stable in vivo gene transduction via a novel adenoviral/retroviral chimeric vector. Nat Biotechnol 1997; 15: 866–870.

    Article  CAS  PubMed  Google Scholar 

  28. Soifer H et al. A novel, helper-dependent, adenovirus–retrovirus hybrid vector: stable transduction by a two-stage mechanism. Mol Ther 2002; 5: 599–608.

    Article  CAS  PubMed  Google Scholar 

  29. Lindemann D, Goepfert PA . The foamy virus envelope glycoproteins. Curr Top Microbiol Immunol 2003; 277: 111–129.

    CAS  PubMed  Google Scholar 

  30. Josephson NC et al. Transduction of human NOD/SCID-repopulating cells with both lymphoid and myeloid potential by foamy virus vectors. Proc Natl Acad Sci USA 2002; 99: 8295–8300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leurs C et al. Comparison of three retroviral vector systems for transduction of NOD/SCID repopulating CD34* cord blood cells. Hum Gene Ther 2003; 14: 509–514.

    Article  CAS  PubMed  Google Scholar 

  32. Falcone V, Schweizer M, Neumann-Haefelin D . Replication of primate foamy viruses in natural and experimental hosts. Curr Top Microbiol Immunol 2003; 277: 161–180.

    CAS  PubMed  Google Scholar 

  33. Heneine W, Schweizer M, Sandstrom P, Folks T . Human infection with foamy viruses. Curr Top Microbiol Immunol 2003; 277: 181–196.

    CAS  PubMed  Google Scholar 

  34. Ausubel FM et al. Current Protocols in Molecular Biology. John Wiley: New York, NY, 1987.

    Google Scholar 

  35. Sambrook J, Russell DW . Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2001.

    Google Scholar 

  36. Heinkelein M et al. Intracellular retrotransposition and cell-to-cell transfer of foamy viruses. J Virol 2003; 77: 11855–11858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gossen M et al. Transcriptional activation by tetracyclines in mammalian cells. Science 1995; 268: 1766–1769.

    Article  CAS  PubMed  Google Scholar 

  38. Gossen M, Bujard H . Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 1992; 89: 5547–5551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Parks RJ et al. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci USA 1996; 93: 13565–13570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heinkelein M et al. Pregenomic RNA is required for efficient incorporation of pol polyprotein into foamy virus capsids. J Virol 2002; 76: 10069–10073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Imrich H, Heinkelein M, Herchenröder O, Rethwilm A . Primate foamy virus pol porteins are inported into the nucleus. J Gen Virol 2000; 81: 2941–2947.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the BMBF (BEO 0312191), Sächsisches Staatsministerium für Umwelt und Landwirtschaft (66-8802.5327/62 and 13-8811.61/142), DFG (Re 627/6-3 and Europäisches Graduiertenkolleg ‘Gene regulation in and by microbial pathogens’) Bayerische Forschungsstiftung (Forgen), and EU (BMH4-CT97-2010). FK was supported by the Boehringer Ingelheim Foundation. We thank Frank Graham for providing the helper virus AdLC8cluc.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picard-Maureau, M., Kreppel, F., Lindemann, D. et al. Foamy virus–adenovirus hybrid vectors. Gene Ther 11, 722–728 (2004). https://doi.org/10.1038/sj.gt.3302216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302216

Keywords

This article is cited by

Search

Quick links