Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

MicroPET imaging of Cre–loxP-mediated conditional activation of a herpes simplex virus type 1 thymidine kinase reporter gene

Abstract

Site-specific recombination tools such as the Cre–loxP system are used to create animal models where conditional gene deletion/activation studies are required. In the current proof of principle study, we have demonstrated that a PET reporter gene (PRG), the herpes simplex virus type 1 thymidine kinase (HSV1-tk), can be made to remain silent and can be activated by Cre–loxP-mediated recombination in cell culture and in living mice. An adenovirus carrying a silent HSV1-tk was tail-vein injected (1x109 PFU) in six transgenic mice that express Cre recombinase in their liver (Cre+) and in four control mice (Cre−). The liver-specific expression of the PRG in Cre+ mice was detected in the microPET following injection of the reporter probe, 9-[4-fluoro-3-(hydroxymethyl)butyl]guanine ([18F]-FHBG). The [18F]-FHBG accumulation in the liver in terms of percent-injected dose per gram of tissue was 7.72±1.13 for the Cre+ mice and 0.10±0.02 for the Cre− mice (P<0.05) 48 h after adenoviral injection. These results were further validated by quantitative RT-PCR, western blotting and by in vitro assays for herpes simplex virus type 1 thymidine kinase enzyme activity. Thus by using the Cre–loxP system it is possible to modulate a PRG and noninvasively monitor the extent of Cre–loxP-mediated gene activation by imaging in a microPET scanner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Grainge I, Jayaram M . The integrase family of recombinase: organization and function of the active site. Mol Microbiol 1999; 33: 449–456.

    Article  CAS  PubMed  Google Scholar 

  2. Voziyanov Y, Pathania S, Jayaram M . A general model for site-specific recombination by the integrase family recombinases. Nucleic Acids Res 1999; 27: 930–941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoess RH, Ziese M, Sternberg N . P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci USA 1982; 79: 3398–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo F, Gopaul DN, Van Duyne GD . Asymmetric DNA bending in the Cre–loxP site-specific recombination synapse. Proc Natl Acad Sci USA 1999; 96: 7143–7148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lakso M et al. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA 1992; 89: 6232–6236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sauer B . Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Methods Enzymol 1993; 225: 890–900.

    Article  CAS  PubMed  Google Scholar 

  7. Groszer M et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 2001; 294: 2186–2189.

    Article  CAS  PubMed  Google Scholar 

  8. Lesche R et al. Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 2002; 32: 148–149.

    Article  CAS  PubMed  Google Scholar 

  9. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP . Pten is essential for embryonic development and tumour suppression. Nat Genet 1998; 19: 348–355.

    Article  CAS  PubMed  Google Scholar 

  10. Zhuo L et al. hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 2001; 31: 85–94.

    Article  CAS  PubMed  Google Scholar 

  11. Akagi K et al. Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res 1997; 25: 1766–1773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stec DE et al. Efficient liver-specific deletion of a floxed human angiotensinogen transgene by adenoviral delivery of Cre recombinase in vivo. J Biol Chem 1999; 274: 21285–21290.

    Article  CAS  PubMed  Google Scholar 

  13. Kawamoto S et al. A novel reporter mouse strain that expresses enhanced green fluorescent protein upon Cre-mediated recombination. FEBS Lett 2000; 470: 263–268.

    Article  CAS  PubMed  Google Scholar 

  14. Gambhir SS et al. Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2000; 2: 118–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iyer M et al. 8-[18F]fluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET. [Comment in: J Nucl. Med. 2001 Jan;42(1):106-9 UI: 21038008]. J Nucl Med 2001; 42: 96–105.

    CAS  PubMed  Google Scholar 

  16. Tjuvajev JG et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 2002; 43: 1072–1083.

    PubMed  Google Scholar 

  17. Nagayama Y et al. Enhanced efficacy of transcriptionally targeted suicide gene/prodrug therapy for thyroid carcinoma with the Cre–loxP system. Cancer Res 1999; 59: 3049–3052.

    CAS  PubMed  Google Scholar 

  18. Wagner KU et al. Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res 1997; 25: 4323–4330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anton M, Graham FL . Site-specific recombination mediated by an adenovirus vector expressing the Cre recombinase protein: a molecular switch for control of gene expression. J Virol 1995; 69: 4600–4606.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu JC, Sundaresan G, Iyer M, Gambhir SS . Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol Ther 2001; 4: 297–306.

    Article  CAS  PubMed  Google Scholar 

  21. Contag CH et al. Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 1995; 18: 593–603.

    Article  CAS  PubMed  Google Scholar 

  22. Tripathy SK, Black HB, Goldwasser E, Leiden JM . Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat Med 1996; 2: 545–550.

    Article  CAS  PubMed  Google Scholar 

  23. Yang Y et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 1994; 91: 4407–4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Loser P, Jennings GS, Strauss M, Sandig V . Reactivation of the previously silenced cytomegalovirus major immediate-early promoter in the mouse liver: involvement of NFkappaB. J Virol 1998; 72: 180–190.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liang Q et al. Monitoring adenoviral DNA delivery, using a mutant herpes simplex virus type 1 thymidine kinase gene as a PET reporter gene. Gene Therapy 2002; 9: 1659–1666.

    Article  CAS  PubMed  Google Scholar 

  26. Southgate TD et al. Long-term transgene expression within the anterior pituitary gland in situ: impact on circulating hormone levels, cellular and antibody-mediated immune responses. Endocrinology 2001; 142: 464–476.

    Article  CAS  PubMed  Google Scholar 

  27. Kiwaki K et al. Correction of ornithine transcarbamylase deficiency in adult spf(ash) mice and in OTC-deficient human hepatocytes with recombinant adenoviruses bearing the CAG promoter. Hum Gene Ther 1996; 7: 821–830.

    Article  CAS  PubMed  Google Scholar 

  28. Sakai Y et al. Gene therapy for hepatocellular carcinoma using two recombinant adenovirus vectors with alpha-fetoprotein promoter and Cre/lox P system. J Virol Methods 2001; 92: 5–17.

    Article  CAS  PubMed  Google Scholar 

  29. Goto H et al. Gene therapy utilizing the Cre/loxP system selectively suppresses tumor growth of disseminated carcinoembryonic antigen-producing cancer cells. Int J Cancer 2001; 94: 414–419.

    Article  CAS  PubMed  Google Scholar 

  30. Kijima T et al. Application of the Cre recombinase/loxP system further enhances antitumor effects in cell type-specific gene therapy against carcinoembryonic antigen-producing cancer. Cancer Res 1999; 59: 4906–4911.

    CAS  PubMed  Google Scholar 

  31. Kanegae Y et al. Efficient gene activation system on mammalian cell chromosomes using recombinant adenovirus producing Cre recombinase. Gene 1996; 181: 207–212.

    Article  CAS  PubMed  Google Scholar 

  32. Kanegae Y et al. Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase. Nucleic Acids Res 1995; 23: 3816–3821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Niwa H, Yamamura K, Miyazaki J . Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991; 108: 193–199.

    Article  CAS  PubMed  Google Scholar 

  34. Xu L et al. CMV-beta-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1 alpha promoter and results in therapeutic levels of human factor X in mice. Hum Gene Ther 2001; 12: 563–573.

    CAS  PubMed  Google Scholar 

  35. Gambhir SS et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci USA 1999; 96: 2333–2338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kaczmarczyk SJ, Green JE . A single vector containing modified cre recombinase and LOX recombination sequences for inducible tissue-specific amplification of gene expression. Nucleic Acids Res 2001; 29: E56–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iyer M, Berenji M, Templeton NS, Gambhir SS . Noninvasive imaging of cationic lipid-mediated delivery of optical and PET reporter genes in living mice. Mol Ther 2002; 6: 555–562.

    Article  CAS  PubMed  Google Scholar 

  38. Hildebrandt IJ, Iyer M, Wagner E, Gambhir SS . Optical imaging of transferrin targeted PEI/DNA complexes in living subjects. Gene Therapy 2003; 10: 758–764.

    Article  CAS  PubMed  Google Scholar 

  39. Kim J et al. Targeting adenoviral vectors by using the extracellular domain of the coxsackie-adenovirus receptor: improved potency via trimerization. J Virol 2002; 76: 1892–1903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nettelbeck DM et al. Targeting of adenovirus to endothelial cells by a bispecific single-chain diabody directed against the adenovirus fiber knob domain and human endoglin (CD105). Mol Ther 2001; 3: 882–891.

    Article  CAS  PubMed  Google Scholar 

  41. Smith JS et al. Redirected infection of directly biotinylated recombinant adenovirus vectors through cell surface receptors and antigens. Proc Natl Acad Sci USA 1999; 96: 8855–8860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iyer M et al. Comparison of FPCV, FHBG, and FIAU as reporter probes for imaging Herpes Simplex Virus Type 1 thymidine kinase reporter gene expression. J Nucl Med 2000; 41: 80P–81P.

    Google Scholar 

  43. Bhaumik S, Gambhir SS . Simultaneous imaging of the expression of two bioluminescent reporter genes in living mice. Mol Ther 2002; 5: S422.

    Google Scholar 

  44. Ray P, Wu AM, Gambhir SS . Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res 2003; 63: 1160–1165.

    CAS  PubMed  Google Scholar 

  45. Sadowski I, Ma J, Triezenberg S, Ptashne M . GAL4-VP16 is an unusually potent transcriptional activator. Nature 1988; 335: 563–564.

    Article  CAS  PubMed  Google Scholar 

  46. Emami KH, Carey M . A synergistic increase in potency of a multimerized VP16 transcriptional activation domain. EMBO J 1992; 11: 5005–5012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Iyer M et al. Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci USA 2001; 98: 14595–14600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang L et al. Molecular engineering of a two-step transcription amplification (TSTA) system for transgene delivery in prostate cancer. Mol Ther 2002; 5: 223–232.

    Article  CAS  PubMed  Google Scholar 

  49. Braselmann S, Graninger P, Busslinger M . A selective transcriptional induction system for mammalian cells based on Gal4-estrogen receptor fusion proteins. Proc Natl Acad Sci USA 1993; 90: 1657–1661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Koster RW, Fraser SE . Tracing transgene expression in living zebrafish embryos. Dev Biol 2001; 233: 329–346.

    Article  CAS  PubMed  Google Scholar 

  51. Loonstra A et al. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc Natl Acad Sci USA 2001; 98: 9209–9214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miyake S et al. Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome. Proc Natl Acad Sci USA 1996; 93: 1320–1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rosenfeld MA et al. Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo. Science 1991; 252: 431–434.

    Article  CAS  PubMed  Google Scholar 

  54. Kolls J, Peppel K, Silva M, Beutler B . Prolonged and effective blockade of tumor necrosis factor activity through adenovirus-mediated gene transfer. Proc Natl Acad Sci USA 1994; 91: 215–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cherry SR, Gambhir SS . Use of positron emission tomography in animal research. ILAR J 2001; 42: 219–232.

    Article  CAS  PubMed  Google Scholar 

  56. Cherry SR et al. MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 1997; 44: 1161–1166.

    Article  CAS  Google Scholar 

  57. Yaghoubi S et al. Human pharmacokinetic and dosimetry studies of [(18)F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. [Comment in: J Nucl Med. 2001 Aug;42(8):1235-7 UI: 21376327]. J Nucl Med 2001; 42: 1225–1234.

    CAS  PubMed  Google Scholar 

  58. Gambhir SS et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci USA 2000; 97: 2785–2790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Xiaoman Lewis, Judy Edwards and Waldmar Ladno (Crump Institute for Molecular Imaging) for technical assistance. We would also like to thank Dr Lily Wu and Jamie Matherly, UCLA for their help with adenoviral work. This work was supported by funding from Department of Energy contract DE-FC03-87ER60615 (SSG), NIH RO1 CA82214-01 (SSG) and SAIRP R24 CA92865 (SSG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SS Gambhir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundaresan, G., Paulmurugan, R., Berger, F. et al. MicroPET imaging of Cre–loxP-mediated conditional activation of a herpes simplex virus type 1 thymidine kinase reporter gene. Gene Ther 11, 609–618 (2004). https://doi.org/10.1038/sj.gt.3302194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302194

Keywords

This article is cited by

Search

Quick links