Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Restoration of p53 tumor-suppressor activity in human tumor cells in vitro and in their xenografts in vivo by recombinant avian adenovirus CELO-p53

Abstract

Human adenovirus (Ad) vectors are extensively used as gene transfer vehicles. However, a serious obstacle for the use of these vectors in clinical applications is due to pre-existing immunity to human Ads affecting the efficacy of gene transfer. One of the approaches to circumvent host immune response could be the development of vectors based on non-human Ads that are able to transduce genes into human cells. In this study, we explored the possibility of using avian Ad CELO vectors as gene-transfer vehicles. For this purpose, we constructed a set of recombinant CELO viruses and demonstrated that they are able to deliver transgenes into various organs on the background of pre-existing immunity to human Ad5. The created CELO-p53 vector restored the function of the p53 tumor suppressor both in cultured human tumor cells in vitro and in their xenografts in nude mice in vivo. The latter effect was accompanied by inhibition of tumor growth. Noteworthily, the delivery of CELO-p53 led to activation of p53 target genes in cells showing inactivation of endogenous p53 by three different mechanisms, that is, in the human epidermoid carcinoma A431, lung adenocarcinoma H1299, and cervical carcinoma HeLa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Corti O et al. A single adenovirus vector mediates doxycycline-controlled expression of human tyrosine hydrolase in brain grafts of human neural progenitors. Nat Biotechnol 1999; 17: 349–354.

    Article  CAS  PubMed  Google Scholar 

  2. Dewey RA et al. Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngenic glioma treated by adenovirus-mediated gene therapy: implication for clinical trials. Nat Med 1999; 5: 1256–1263.

    Article  CAS  PubMed  Google Scholar 

  3. Yang Y, Li Q, Ertl HC, Wilson JM . Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 1995; 69: 2004–2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kass-Eisler A et al. The impact of developmental stage, route of administration and the immune system on adenovirus-mediated gene transfer. Gene Therapy 1994; 1: 395–402.

    CAS  PubMed  Google Scholar 

  5. Harvey BG et al. Variability of human systemic humoral immune responses to adenovirus gene transfer vectors administered to different organs. J Virol 1999; 73: 6729–6742.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Huebner RG et al. Adenoidal–pharingeal–conjuctivital agents. A newly recognized group of common viruses of the respiratory system. N Engl J Med 1954; 251: 1077–1086.

    Article  CAS  PubMed  Google Scholar 

  7. Jung D, Wigand R . Epidemiology of group II adenoviruses. Am J Epidemiol 1967; 85: 311–319.

    Article  CAS  PubMed  Google Scholar 

  8. Schmitz H, Wigand R, Hienrich W . Worldwide epidemiology of human adenovirus infections. Am J Epidemiol 1983; 117: 455–466.

    Article  CAS  PubMed  Google Scholar 

  9. Kass-Eisler A et al. Circumventing the immune response to adenovirus-mediated gene therapy. Gene Therapy 1996; 3: 154–162.

    CAS  PubMed  Google Scholar 

  10. Mack CA . Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum Gene Ther 1997; 8: 99–109.

    Article  CAS  PubMed  Google Scholar 

  11. Mastrangeli A et al. ‘Sero-switch’ adenovirus-mediated in vivo gene transfer: circumvention of anti-adenovirus humoral defences against repeat adenovirus vector administration by changing the adenovirus serotype. Hum Gene Ther 1996; 7: 79–87.

    Article  CAS  PubMed  Google Scholar 

  12. Loser P et al. Ovine adenovirus vectors promote efficient gene delivery in vivo. Gene Ther Mol Biol 1999; 4: 33–43.

    Google Scholar 

  13. Flomenberg P, Piaskowski V, Truitt RL, Casper JT . Characterization of human proliferative T cells response to adenoviruses. J Infect Dis 1995; 171: 1090–1096.

    Article  CAS  PubMed  Google Scholar 

  14. Smith CA, Woodruff LS, Rooney C, Kitchigan GR . Extensive cross-reactivity of adenovirus-specific cytotoxic T cells. Hum Gene Ther 1998; 9: 1419–1427.

    Article  CAS  PubMed  Google Scholar 

  15. Marshall E . Gene therapy death prompt review of adenovirus vector. Science 1999; 286: 2244–2245.

    Article  CAS  PubMed  Google Scholar 

  16. Loser P et al. Advances in the development of non-human viral DNA-vectors for gene delivery. Curr Gene Ther 2002; 2: 161–171.

    Article  CAS  PubMed  Google Scholar 

  17. Shmarov MM et al. Eukaryotic vectors of Celo avian adenovirus genome, carrying GFP and human IL-2 genes. Mol Gen Microbiol Virol 2002; 2: 25–30.

    Google Scholar 

  18. Michou AI, Lehrmann H, Saltik M, Cotten M . Mutational analysis of the avian adenovirus CELO, which provides a basis for gene delivery vectors. J Virol 1999; 73: 1399–1410.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Francois A et al. Construction of avian adenovirus CELO recombinants in cosmids. J Virol 2001; 11: 5288–5301.

    Article  Google Scholar 

  20. Tan PK, Michou A, Bergelson JM, Cotten M . Defining CAR as a cellular receptor for the avian adenovirus CELO using a genetic analysis of the two viral fibre proteins. J Gen Virol 2001; 82: 1465–1472.

    Article  CAS  PubMed  Google Scholar 

  21. Bergelson JM et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  22. Roelvink PW et al. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroup A, C, D, E and F. J Virol 1998; 72: 7909–7915.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stevenson SC et al. Human adenovirus serotype 3 and 5 bind two different cellular receptors via the fiber head domain. J Virol 1995; 69: 2850–2857.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tomko RP et al. Expression of the adenovirus receptor and its interaction with the fiber knob. Exp Cell Res 2000; 255: 47–55.

    Article  CAS  PubMed  Google Scholar 

  25. Laver WG, Younghusband HB, Wrigley NG . Purification and properties of chick embryo lethal orphan virus (an avian adenovirus). Virology 1971; 45: 598–614.

    Article  CAS  PubMed  Google Scholar 

  26. Berger J, Hauber J, Hauber R, Geiger R, Cullen BR . Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 1988; 66: 1–10.

    Article  CAS  PubMed  Google Scholar 

  27. Lusky M et al. In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted. J Virol 1998; 72: 2022–2032.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Verhovskaya LV et al. Enzyme-linked immunosorbent assay for determination of specific antibodies to canine adenovirus hexon. Agric Biotechnol 1994; 4: 36–42.

    Google Scholar 

  29. Liang XH et al. Co-localization of the tumor suppressor protein p53 and human papilloma virus E6 protein in human cervical carcinoma cell lines. Oncogene 1993; 8: 2645–2652.

    CAS  PubMed  Google Scholar 

  30. Park DJ et al. Transcriptional and DNA-binding abilities of endogenous p53 in p53 mutant cell lines. Oncogene 1994; 9: 1899–1906.

    CAS  PubMed  Google Scholar 

  31. Chen JY et al. Heterogenety of transcriptional activity of mutant p53 protein and p53 DNA target sequences. Oncogene 1993; 8: 2159–2166.

    CAS  PubMed  Google Scholar 

  32. Sigal A, Rotter V . Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genomes. Cancer Res 2000; 60: 6788–6793.

    CAS  PubMed  Google Scholar 

  33. Chene P . In vitro analysis of the dominant negative effect of p53 mutants. J Mol Biol 1998; 281: 205–209.

    Article  CAS  PubMed  Google Scholar 

  34. Korst RJ et al. Adenovirus gene transfer vectors inhibit growth of lymphatic tumor metastases independent of a therapeutic transgene. Hum Gene Ther 2001; 12: 1639–1649.

    Article  CAS  PubMed  Google Scholar 

  35. Colombo R et al. The adenovirus protein GAM1 interferes with sumoylation of histone deacetylase 1. EMBO Rep 2002; 3: 1062–1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Butler LM et al. The histone deacetylase inhibitor SAHA arrest cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci USA 2002; 99: 11700–11705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vigushin DM, Coombes RC . Histone deacetylase inhibitors in cancer treatment. Anticancer Drugs 2002; 13: 1–13.

    Article  CAS  PubMed  Google Scholar 

  38. Imanishi R et al. A histone deacetylase inhibitor enhances killing of undifferentiated thyroid carcinoma cells by p53 gene therapy. J Clin Endocrinol Metab 2002; 87: 4821–4824.

    Article  CAS  PubMed  Google Scholar 

  39. Komarova EA et al. Transgenic mice with p53-responsive LacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. EMBO J 1997; 16: 1391–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr M Cotten (Institute for Molecular Pathology, Vienna, Austria) for providing the LMH cells, and to Dr K Doronin for stimulating discussions. The work was supported by the Russian Foundation for Basic Research (BSN, BPK, and PMC) and the International Research Scholars Program of the Howard Hughes Medical Institute (BPK).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logunov, D., Ilyinskaya, G., Cherenova, L. et al. Restoration of p53 tumor-suppressor activity in human tumor cells in vitro and in their xenografts in vivo by recombinant avian adenovirus CELO-p53. Gene Ther 11, 79–84 (2004). https://doi.org/10.1038/sj.gt.3302146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302146

Keywords

This article is cited by

Search

Quick links