Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Imaging the spatial distribution of transgene expression in the lungs with positron emission tomography

Abstract

This study was designed to evaluate the utility of positron emission tomography (PET) to quantify the magnitude and spatial distribution of transgene expression after different methods of adenoviral vector delivery (with surfactant- and saline-based vehicles) within rat lungs. In all, 17 animals (eight in the surfactant group, nine in the saline group) were studied 3 days after intratracheal administration of a replication-incompetent adenovirus encoding a mutant Herpes simplex virus-1 thymidine kinase (mHSV1-TK)-enhanced green fluorescent protein fusion gene driven by a Cytomegalovirus promoter (Ad-CMV-mNLS-HSV1sr39tk-egfp). PET images were obtained 1 h after i.v. administration of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]-FHBG), an imaging substrate for mHSV1-TK. Overall, the average lung concentration of [18F]-FHBG was significantly greater in the surfactant group than in the saline group (0.24±0.06 versus 0.17±0.03% injected dose/ml lung, P0.05). Lung [18F]-FHBG distribution was more peripheral and more homogeneous in the surfactant group than in the saline group (mean coefficient of variation=31±4 versus 36±3%, respectively, P0.05). Regions of increased tracer concentration in the surfactant group compared to the saline group were evenly distributed throughout the lungs. We conclude that PET imaging provides useful and meaningful information about the effectiveness of different gene transfer delivery strategies within the lungs, and that surfactant-based vehicles may be a superior strategy for pulmonary gene transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Yang M et al. Visualizing gene expression by whole-body fluorescence imaging. Proc Natl Acad Sci USA 2000; 97: 12278–12282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu JC et al. Optical imaging of cardiac reporter gene expression in living rats. Circulation 2002; 105: 1631–1634.

    Article  PubMed  Google Scholar 

  3. De A, Lewis XZ, Gambhir SS . Noninvasive imaging of lentiviral-mediated reporter gene expression in living mice. Mol Ther 2003; 7: 681–691.

    Article  CAS  PubMed  Google Scholar 

  4. Bhaumik S, Gambhir SS . Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 2002; 99: 377–382.

    Article  CAS  PubMed  Google Scholar 

  5. Cherry SR, Gambhir SS . Use of positron emission tomography in animal research. Ilar J 2001; 42: 219–232.

    Article  CAS  PubMed  Google Scholar 

  6. Wu JC et al. Positron emission tomography imaging of cardiac reporter gene expression in living rats. Circulation 2002; 106: 180–183.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Luker GD et al. Noninvasive imaging of protein–protein interactions in living animals. Proc Natl Acad Sci USA 2002; 99: 6961–6966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gambhir SS et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci USA 2000; 97: 2785–2790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liang Q et al. Monitoring adenoviral DNA delivery, using a mutant herpes simplex virus type 1 thymidine kinase gene as a PET reporter gene. Gene Therapy 2002; 9: 1659–1666.

    Article  CAS  PubMed  Google Scholar 

  10. Tjuvajev JG et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 1998; 58: 4333–4341.

    CAS  PubMed  Google Scholar 

  11. Inubushi M et al. Positron-emission tomography reporter gene expression imaging in rat myocardium. Circulation 2003; 107: 326–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Richard JC et al. Imaging pulmonary gene expression with positron emission tomography. Am J Respir Crit Care Med 2003; 167: 1257–1263.

    Article  PubMed  Google Scholar 

  13. MacLaren DC et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Therapy 1999; 6: 785–791.

    Article  CAS  PubMed  Google Scholar 

  14. Weiss D . Delivery of gene transfer vectors to lung: obstacles and the role of adjunct techniques for airway administration. Mol Ther 2002; 6: 148–152.

    Article  CAS  PubMed  Google Scholar 

  15. Weiss DJ et al. Comparison of surfactant and perfluorochemical liquid enhanced adenovirus-mediated gene transfer in normal rat lung. Mol Ther 2002; 6: 43–49.

    Article  CAS  PubMed  Google Scholar 

  16. Iyer M, Berenji M, Templeton NS, Gambhir SS . Noninvasive imaging of cationic lipid-mediated delivery of optical and PET reporter genes in living mice. Mol Ther 2002; 6: 555–562.

    Article  CAS  PubMed  Google Scholar 

  17. Ma Z et al. Redirecting adenovirus to pulmonary endothelium by cationic liposomes. Gene Therapy 2002; 9: 176–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Delepine P et al. Visualization of the transgene distribution according to the administration route allows prediction of the transfection efficacy and validation of the results obtained. Gene Therapy 2002; 9: 736–739.

    Article  CAS  PubMed  Google Scholar 

  19. Lerondel S et al. Radioisotopic imaging allows optimization of adenovirus lung deposition for cystic fibrosis gene therapy. Hum Gene Ther 2001; 12: 1–11.

    Article  CAS  PubMed  Google Scholar 

  20. Bogdanov A, Weissleder R . In vivo imaging of gene delivery and expression. Trends Biotechnol 2002; 20: S11–18.

    Article  Google Scholar 

  21. Weissleder R et al. In vivo magnetic resonance imaging of transgene expression. Nat Med 2000; 6: 351–355.

    Article  CAS  PubMed  Google Scholar 

  22. Gambhir SS et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci USA 1999; 96: 2333–2338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gambhir SS et al. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 1998; 39: 2003–2011.

    CAS  PubMed  Google Scholar 

  24. Liang Q et al. Noninvasive, repetitive, quantitative measurement of gene expression from a bicistronic message by positron emission tomography, following gene transfer with adenovirus. Mol Ther 2002; 6: 73–82.

    Article  CAS  PubMed  Google Scholar 

  25. Jobe AH et al. Surfactant enhances adenovirus-mediated gene expression in rabbit lungs. Gene Therapy 1996; 3: 775–779.

    CAS  PubMed  Google Scholar 

  26. Jobe AH et al. Surfactant effects on aerosolized and instilled adenoviral-mediated gene transfer. Hum Gene Ther 1996; 7: 697–704.

    Article  CAS  PubMed  Google Scholar 

  27. Katkin JP, Husser RC, Langston C, Welty SE . Exogenous surfactant enhances the delivery of recombinant adenoviral vectors to the lung. Hum Gene Ther 1997; 8: 171–176.

    Article  CAS  PubMed  Google Scholar 

  28. Factor P, Mendez M, Mutlu GM, Dumasius V . Acute hyperoxic lung injury does not impede adenoviral-mediated alveolar gene transfer. Am J Respir Crit Care Med 2002; 165: 521–526.

    Article  PubMed  Google Scholar 

  29. Factor P et al. Adenovirus-mediated transfer of an Na+/K+-ATPase beta1 subunit gene improves alveolar fluid clearance and survival in hyperoxic rats. Hum Gene Ther 2000; 11: 2231–2242.

    Article  CAS  PubMed  Google Scholar 

  30. Ponde DE, Dence CS, Schuster DP, Welch MJ . Microwave mediated rapid and reproducible radiosynthesis of [18F]FHBG. Nucl Med Biol (in press).

  31. Cherry SR et al. MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 1997; 44: 1161–1166.

    Article  CAS  Google Scholar 

  32. Tai YC et al. Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys Med Biol 2001; 46: 1845–1862.

    Article  CAS  PubMed  Google Scholar 

  33. Defrise M et al. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 1997; 16: 145–158.

    Article  CAS  PubMed  Google Scholar 

  34. Robb R . Biomedical Imaging: Visualization and Analysis. John Wiley and Sons, Inc.: New York, 1999.

    Google Scholar 

  35. Sandiford P, Province MA, Schuster DP . Distribution of regional density and vascular permeability in the adult respiratory distress syndrome. Am J Respir Crit Care Med 1995; 151: 737–742.

    Article  CAS  PubMed  Google Scholar 

  36. Schuster DP et al. Measurement of regional pulmonary blood flow with PET. J Nucl Med 1995; 36: 371–377.

    CAS  PubMed  Google Scholar 

  37. Chatziioannou AF et al. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 1999; 40: 1164–1175.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jim Kozlowski for his contribution to this study, Datta Ponde and Carmen Dence for radiopharmaceutical production, and gratefully acknowledge the support provided by the microPET facility staff in the Division of Radiological Sciences of Washington University School of Medicine. The work was funded by NIH HL32815, HL13851, HL66211 and the Evanston Northwestern Healthcare Research Institute.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, JC., Factor, P., Welch, L. et al. Imaging the spatial distribution of transgene expression in the lungs with positron emission tomography. Gene Ther 10, 2074–2080 (2003). https://doi.org/10.1038/sj.gt.3302117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302117

Keywords

This article is cited by

Search

Quick links