Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Viral oncoapoptosis of human tumor cells

Abstract

Many cancer cells refractory to radiation treatment and chemotherapy proliferate because of loss of intrinsic programmed cell death (apoptosis) regulation. Consequently, the resolution of these cancers are many times outside the management capabilities of conventional therapeutics. We now report that replication-defective Δ27 herpes simplex virus (rd Δ27) triggers apoptosis in three representative transformed human cell lines. Susceptibility to virus-induced cell death is dependent on the abundance and distribution of modified p53 protein in the tumor cells indicating specific targeting of the treatment. Primary human and mouse fibroblast cells that produce modified p53 are resistant to rd Δ27 killing but not to apoptosis induced by nonviral environmental factors. These results suggest that induction of apoptosis by nonreplicating virus is a feasible genetic therapy approach for killing human cancer cells. Our findings may have important implications in designing novel virus-based anticancer strategies in appropriate animal model systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kerr JF, Wyllie AH, Currie AR . Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cryns V, Yuan J . Proteases to die for. Genes Dev 1998; 12: 1551–1570.

    Article  PubMed  Google Scholar 

  3. Salvesen GS, Dixit VM . Caspases: intracellular signaling by proteolysis. Cell 1997; 91: 443–446.

    Article  CAS  PubMed  Google Scholar 

  4. Green DA, Evan G . A matter of life and death. Cancer Cell 2002; 1: 19–30.

    Article  CAS  PubMed  Google Scholar 

  5. Lowe SW, Lin AW . Apoptosis in cancer. Carcinogenesis 2000; 21: 485–495.

    Article  CAS  PubMed  Google Scholar 

  6. Levine AJ . p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–331.

    Article  CAS  PubMed  Google Scholar 

  7. Prives C, Hall PA . The p53 pathway. J Pathol 1999; 187: 112–126.

    Article  CAS  PubMed  Google Scholar 

  8. Hainaut P et al. IARC Database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Res 1998; 26: 205–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hainaut P, Hollstein M . p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 2000; 77: 81–137.

    Article  CAS  PubMed  Google Scholar 

  10. Lowe SW, Ruley HE, Jacks T, Housman DE . p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993; 74: 957–967.

    Article  CAS  PubMed  Google Scholar 

  11. Lowe SW et al. p53 status and the efficacy of cancer therapy in vivo. Science 1994; 266: 807–810.

    Article  CAS  PubMed  Google Scholar 

  12. Weinstein JN et al. An information-intensive approach to the molecular pharmacology of cancer. Science 1997; 275: 343–349.

    Article  CAS  PubMed  Google Scholar 

  13. Koyama AH, Fukumori T, Fujita M, Irie H, Adachi A . Physiological significance of apoptosis in animal virus infection. Microbes Infect 2000; 2: 1111–1117.

    Article  CAS  PubMed  Google Scholar 

  14. Aubert M, Blaho JA . Modulation of apoptosis during herpes simplex virus infection in human cells. Microbes Infect 2001; 3: 859–866.

    Article  CAS  PubMed  Google Scholar 

  15. Aubert M, O'Toole J, Blaho JA . Induction and prevention of apoptosis in human HEp-2 cells by herpes simplex virus type 1. J Virol 1999; 73: 10359–10370.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Honess RW, Roizman B . Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol 1974; 14: 8–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Aubert M, Rice SA, Blaho JA . Accumulation of herpes simplex virus type 1 early and leaky-late proteins correlates with apoptosis prevention in infected human HEp-2 cells. J Virol 2001; 75: 1013–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aubert M, Blaho JA . The herpes simplex virus type 1 regulatory protein ICP27 is required for the prevention of apoptosis in infected human cells. J Virol 1999; 73: 2803–2813.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Boshart M et al. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J 1984; 3: 1151–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwarz E et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 1985; 314: 111–114.

    Article  CAS  PubMed  Google Scholar 

  21. Scheffner M, Munger K, Byrne JC, Howley PM . The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc Natl Acad Sci USA 1991; 88, 5523–5527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scheffner M et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63: 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  23. Munger K et al. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J 1989; 8: 4099–4105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blaho JA, Aaronson SA . Convicting a human tumor virus: guilt by association? Proc Natl Acad Sci USA 1999; 96: 7619–7621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Howley PM . Role of the human papillomaviruses in human cancer. Cancer Res 1991; 51: 5019s–5022s.

    CAS  PubMed  Google Scholar 

  26. Laimins LA . The biology of human papillomaviruses: from warts to cancer. Infect Agents Dis 1993; 2: 74–86.

    CAS  PubMed  Google Scholar 

  27. Villa LL . Human papillomaviruses and cervical cancer. Adv Cancer Res 1997; 71: 321–341.

    Article  CAS  PubMed  Google Scholar 

  28. Moore AE, Sabachewsky L, Toolan HW . Culture characteristics of four permanent lines of human cancer cells. Cancer Res 1955; 15: 598–605.

    CAS  PubMed  Google Scholar 

  29. Rhim JS, Cho HY, Huebner RJ . Non-producer human cells induced by murine sarcoma virus. Int J Cancer 1975; 15: 23–29.

    Article  CAS  PubMed  Google Scholar 

  30. Bacchetti S, Graham FL . Transfer of the gene for thymidine kinase to thymidine kinase-deficient human cells by purified herpes simplex viral DNA. Proc Natl Acad Sci USA 1977; 74: 1590–1594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kahn T, Schwarz E, zur Hausen H . Molecular cloning and characterization of the DNA of a new human papillomavirus (HPV 30) from a laryngeal carcinoma. Int J Cancer 1986; 37: 61–65.

    Article  CAS  PubMed  Google Scholar 

  32. Lu H, Taya Y, Ikeda M, Levine AJ . Ultraviolet radiation, but not gamma radiation or etoposide-induced DNA damage, results in the phosphorylation of the murine p53 protein at serine-389. Proc Natl Acad Sci USA 1998; 95: 6399–6402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Graham FL, Smiley J, Russell WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977; 36: 59–74.

    Article  CAS  PubMed  Google Scholar 

  34. Lowe SW, Ruley HE . Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev 1993; 7: 535–545.

    Article  CAS  PubMed  Google Scholar 

  35. Preston CM, Rinaldi A, Nicholl MJ . Herpes simplex virus type 1 immediate early gene expression is stimulated by inhibition of protein synthesis. J Gen Virol 1998; 79: 117–124.

    Article  CAS  PubMed  Google Scholar 

  36. Debbas M, White E . Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev 1993; 7: 546–554.

    Article  CAS  PubMed  Google Scholar 

  37. Leopardi R, Roizman B . The herpes simplex virus major regulatory protein ICP4 blocks apoptosis induced by the virus or by hyperthermia. Proc Natl Acad Sci USA 1996; 93: 9583–9587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koyama AH, Adachi A . Induction of apoptosis by herpes simplex virus type 1. J Gen Virol 1997; 78: 2909–2912.

    Article  CAS  PubMed  Google Scholar 

  39. Koyama AH, Miwa Y . Suppression of apoptotic DNA fragmentation in herpes simplex virus type 1-infected cells. J Virol 1997; 71: 2567–2571.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jerome KR, Tait JF, Koelle DM, Corey L . Herpes simplex virus type 1 renders infected cells resistant to cytotoxic T-lymphocyte-induced apoptosis. J Virol 1998; 72: 436–441.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Galvan V, Roizman B . Herpes simplex virus 1 induces and blocks apoptosis at multiple steps during infection and protects cells from exogenous inducers in a cell-type-dependent manner. Proc Natl Acad Sci USA 1998; 95: 3931–3936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leopardi R, Van Sant C, Roizman B . The herpes simplex virus 1 protein kinase US3 is required for protection from apoptosis induced by the virus. Proc Natl Acad Sci USA 1997; 94: 7891–7896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jerome KR et al. Herpes simplex virus inhibits apoptosis through the action of two genes, Us5 and Us3. J Virol 1999; 73: 8950–8957.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou G, Galvan V, Campadelli-Fiume G, Roizman B . Glycoprotein D or J delivered in trans blocks apoptosis in SK-N-SH cells induced by a herpes simplex virus 1 mutant lacking intact genes expressing both glycoproteins. J Virol 2000; 74: 11782–11791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fink DJ et al. Design and application of HSV vectors for neuroprotection. Gene Therapy 2000; 7: 115–119.

    Article  CAS  PubMed  Google Scholar 

  46. Goins WF et al. Development of replication-defective herpes simplex virus vectors. Methods Mol Med 2002; 69: 481–507.

    CAS  PubMed  Google Scholar 

  47. Johnson PA et al. Cytotoxicity of a replication-defective mutant of herpes simplex virus type 1. J Virol 1992; 66: 2952–2965.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Huard J et al. LacZ gene transfer to skeletal muscle using a replication-defective herpes simplex virus type 1 mutant vector. Hum Gene Therapy 1997; 8: 439–452.

    Article  CAS  Google Scholar 

  49. Samaniego LA, Webb AL, DeLuca NA . Functional interactions between herpes simplex virus immediate-early proteins during infection: gene expression as a consequence of ICP27 and different domains of ICP4. J Virol 1995; 69: 5705–5715.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Johnson PA, Wang MJ, Friedmann T . Improved cell survival by the reduction of immediate-early gene expression in replication-defective mutants of herpes simplex virus type 1 but not by mutation of the virion host shutoff function. J Virol 1994; 68: 6347–6362.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Holmes KD et al. A multi-mutant herpes simplex virus vector has minimal cytotoxic effects on the distribution of filamentous actin, alpha-actinin 2 and a glutamate receptor in differentiated PC12 cells. J Neurovirol 2000; 6: 33–45.

    Article  CAS  PubMed  Google Scholar 

  52. Krisky DM et al. Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Therapy 1998; 5: 1593–1603.

    Article  CAS  PubMed  Google Scholar 

  53. Moriuchi S et al. HSV vector cytotoxicity is inversely correlated with effective TK/GCV suicide gene therapy of rat gliosarcoma. Gene Therapy 2000; 7: 1483–1490.

    Article  CAS  PubMed  Google Scholar 

  54. Samaniego LA, Neiderhiser L, DeLuca NA . Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J Virol 1998; 72: 3307–3320.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Samaniego LA, Wu N, DeLuca NA . The herpes simplex virus immediate-early protein ICP0 affects transcription from the viral genome and infected-cell survival in the absence of ICP4 and ICP27. J Virol 1997; 71: 4614–4625.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hobbs WE, Brough DE, Kovesdi I, DeLuca NA . Efficient activation of viral genomes by levels of herpes simplex virus ICP0 insufficient to affect cellular gene expression or cell survival. J Virol 2001; 75: 3391–3403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu N, Watkins SC, Schaffer PA, DeLuca NA . Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22. J Virol 1996; 70: 6358–6369.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lomonte P, Everett RD . Herpes simplex virus type 1 immediate-early protein Vmw110 inhibits progression of cells through mitosis and from G(1) into S phase of the cell cycle. J Virol 1999; 73: 9456–9467.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hobbs II WE, DeLuca NA . Perturbation of cell cycle progression and cellular gene expression as a function of herpes simplex virus ICP0. J Virol 1999; 73: 8245–8255.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. DeLuca NA, Courtney MA, Schaffer PA . Temperature-sensitive mutants in herpes simplex virus type 1 ICP4 permissive for early gene expression. J Virol 1984; 52: 767–776.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. DeLuca NA, McCarthy AM, Schaffer PA . Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J Virol 1985; 56: 558–570.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. DeLuca NA, Schaffer PA . Activation of immediate-early, early, and late promoters by temperature- sensitive and wild-type forms of herpes simplex virus type 1 protein ICP4. Mol Cell Biol 1985; 5: 1997–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Knipe DM et al. Molecular genetics of herpes simplex virus. VI. Characterization of a temperature-sensitive mutant defective in the expression of all early viral gene products. J Virol 1981; 38: 539–547.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Preston CM . Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild-type virus or the temperature-sensitive mutant tsK. J Virol 1979; 29: 275–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kirn D, Martuza RL, Zwiebel J . Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nat Med 2001; 7: 781–787.

    Article  CAS  PubMed  Google Scholar 

  66. Ganly I et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer [published erratum appears in Clin Cancer Res 2000 May;6(5):2120]. Clin Cancer Res 2000; 6: 798–806 (2000).

    CAS  PubMed  Google Scholar 

  67. Khuri FR et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer [see comments]. Nat Med 2000; 6: 879–885.

    Article  CAS  PubMed  Google Scholar 

  68. Markert JM et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Therapy 2000; 7: 867–874.

    Article  CAS  PubMed  Google Scholar 

  69. Mineta T et al. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1995; 1: 938–943.

    Article  CAS  PubMed  Google Scholar 

  70. Andreansky SS et al. The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors. Proc Natl Acad Sci USA 1996; 93: 11313–11318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chou J, Kern ER, Whitley RJ, Roizman B . Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 1990; 250: 1262–1266.

    Article  CAS  PubMed  Google Scholar 

  72. Raj K, Ogston P, Beard P . Virus-mediated killing of cells that lack p53 activity. Nature 2001; 412: 914–917.

    Article  CAS  PubMed  Google Scholar 

  73. Puck T, Marcus P, Cieciura SJ . Clonal growth of mammalian cells in vitro. J Exp Med 1956; 103: 273–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Post LE, Roizman B . A generalized technique for deletion of specific genes in large genomes: alpha gene 22 of herpes simplex virus 1 is not essential for growth. Cell 1981; 25: 227–232.

    Article  CAS  PubMed  Google Scholar 

  75. Yasumura Y, Kawakita Y . Nippon Rinsho 1963; 21: 1209.

  76. Spector DJ . The pattern of integration of viral DNA sequences in the adenovirus 5-transformed human cell line 293. Virology 1983; 130: 533–538.

    Article  CAS  PubMed  Google Scholar 

  77. Hughes Jr RG, Munyon WH . Temperature-sensitive mutants of herpes simplex virus type 1 defective in lysis but not in transformation. J Virol 1975; 16: 275–283.

    PubMed  PubMed Central  Google Scholar 

  78. Soliman TM, Sandri-Goldin RM, Silverstein SJ . Shuttling of the herpes simplex virus type 1 regulatory protein ICP27 between the nucleus and cytoplasm mediates the expression of late proteins. J Virol 1997; 71: 9188–9197.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

These studies were supported by a grant from the NIH (AI38873).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubert, M., Blaho, J. Viral oncoapoptosis of human tumor cells. Gene Ther 10, 1437–1445 (2003). https://doi.org/10.1038/sj.gt.3302004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302004

Keywords

This article is cited by

Search

Quick links