Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Bone marrow-derived, endothelial progenitor-like cells as angiogenesis-selective gene-targeting vectors

Abstract

Human and mouse proliferation-competent, bone marrow or peripheral circulation derived endothelial progenitor-like cells (EPCs) were isolated, expanded and genetically engineered ex vivo to express the beta galactosidase (β-gal), green fluorescence protein or thymidine kinase (TK) genes using retrovirus-mediated gene transfer. Genetically labeled EPCs were transplanted into sublethally irradiated tumor-bearing mice and were found to migrate to and incorporate into the angiogenic vasculature of growing tumors while maintaining transgene expression. Ganciclovir treatment resulted in significant tumor necrosis in animals previously administered TK-expressing EPCs with no systemic toxicity. These results demonstrate the feasibility of using genetically modified EPCs as angiogenesis-selective gene-targeting vectors and the potential of this approach to mediate non-toxic and systemic antitumor responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Folkman J . Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–1186.

    Article  CAS  PubMed  Google Scholar 

  2. Fan T-PD, Jaggar R, Bicknell R . Controlling the vasculature: angiogenesis, anti-angiogenesis and vascular targeting of gene therapy. TiPS 1995; 16: 57–66.

    CAS  PubMed  Google Scholar 

  3. Holmgren L, O'Reilly MS, Folkman J . Dormancy of micro-metastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995; 2: 149–153.

    Article  Google Scholar 

  4. Folkman J . Angiogenic zip code. Nat Biotechnol 1997; 15: 510.

    Article  CAS  PubMed  Google Scholar 

  5. Asahara T et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–967.

    Article  CAS  PubMed  Google Scholar 

  6. Asahara T et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999; 85: 221–228.

    Article  CAS  PubMed  Google Scholar 

  7. Shi Q et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998; 92: 362–367.

    CAS  PubMed  Google Scholar 

  8. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP . Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000; 105: 71–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peichev M et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000; 95: 952–958.

    CAS  PubMed  Google Scholar 

  10. Rafii S et al. Characterization of hematopoietic cells arising on the textured surface of left ventricular assist devices. Ann Thorac Surg 1995; 60: 1561–1562.

    Article  Google Scholar 

  11. Gunsilius E et al. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 2000; 355: 1688–1691.

    Article  CAS  PubMed  Google Scholar 

  12. Crosby JR et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 2000; 87: 728–730.

    Article  CAS  PubMed  Google Scholar 

  13. Gehling UM et al. In vivo differentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000; 95: 3106–3112.

    CAS  PubMed  Google Scholar 

  14. Takahasi T et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5: 434–438.

    Article  Google Scholar 

  15. de Bont ES et al. Mobilized human CD34+ hematopoietic stem cells enhance tumor growth in a nonobese diabetic/severe combined immunodeficient mouse model of human non-Hodgkin's lymphoma. Cancer Res 2001; 61: 7654–7659.

    CAS  PubMed  Google Scholar 

  16. Kalka C et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 2000; 97: 3422–3427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kawamoto A et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103: 634–637.

    Article  CAS  PubMed  Google Scholar 

  18. Lyden D et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001; 7: 1194–1201.

    Article  CAS  PubMed  Google Scholar 

  19. Bevilacqua MP, Stengelin S, Gimbrone Jr MA, Seed B . Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 1989; 243: 1160–1165.

    Article  CAS  PubMed  Google Scholar 

  20. Bevilacqua MP . Endothelial—leukocyte adhesion molecules. Ann Rev Immunol 1993; 11: 767–804.

    Article  CAS  Google Scholar 

  21. Senger DR et al. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the αvβ3 integrin, osteopontin, and thrombin. Am J Pathol 1996; 149: 293–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Senger DR . Molecular framework for angiogenesis. Am J Pathol 1996; 149: 1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Harel J, Rassart E, Jolicoeur P . Cell cycle dependence of synthesis of unintegrated viral DNA in mouse cells newly infected with murine leukemia virus. Virology 1981; 110: 202–207.

    Article  CAS  PubMed  Google Scholar 

  24. Miller DG, Adam MA, Miller DA . Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 1990; 10: 4239–4242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nolta JA, Kohn DB . Comparison of the effects of growth factors on retroviral vector-mediated gene transfer and the proliferative status of human hematopoietic progenitor cells. Hum Gene Ther 1990; 1: 257–268.

    Article  CAS  PubMed  Google Scholar 

  26. Williams DA . Expression of introduced genetic sequences in hematopoietic cells following retroviral-mediated gene transfer. Hum Gene Ther 1990; 1: 229–239.

    Article  CAS  PubMed  Google Scholar 

  27. Nolta JA, Smogorzewska EM, Kohn DB . Analysis of optimal conditions for retroviral-mediated transduction of primitive human hematopoietic cells. Blood 1995; 86: 101–110.

    CAS  PubMed  Google Scholar 

  28. Emerson SG . Ex vivo expansion of hematopoietic precursors, progenitors, and stem cells: the next generation of cellular therapeutics. Blood 1996; 87: 3082–3088.

    CAS  PubMed  Google Scholar 

  29. Rafii S . Circulating endothelial precursors: mystery, reality, and promise. J Clin Invest 2000; 105: 17–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hanenberg H et al. Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat Med 1996; 2: 876–882.

    Article  CAS  PubMed  Google Scholar 

  31. Hanenberg H et al. Optimization of fibronectin-assisted retroviral gene transfer into human CD34+ hematopoietic cells. Hum Gene Ther 1997; 8: 2193–2206.

    Article  CAS  PubMed  Google Scholar 

  32. Hanahan D, Weinberg RA . The hallmarks of Cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  33. Choi K et al. A common precursor for hematopoietic and endothelial cells. Development 1998; 125: 725–732.

    CAS  PubMed  Google Scholar 

  34. Gomez-Navarro J et al. Genetically modified CD34+ cells as cellular vehicles for gene delivery into areas of angiogenesis in a rhesus model. Gene Therapy 2000; 7: 43–52.

    Article  CAS  PubMed  Google Scholar 

  35. Freeman SM et al. The bystander effect: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 1993; 53: 5274–5283.

    CAS  PubMed  Google Scholar 

  36. Tanaka T, Manoma Y, Wen PY, Kufe DW, Fine HA . Viral-vector mediated transduction of a modified platelet factor 4 cDNA inhibits angiogenesis and tumor growth. Nature Medicine 1997; 3: 381–387.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, N., Glod, J., Lee, J. et al. Bone marrow-derived, endothelial progenitor-like cells as angiogenesis-selective gene-targeting vectors. Gene Ther 10, 647–656 (2003). https://doi.org/10.1038/sj.gt.3301883

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301883

Keywords

This article is cited by

Search

Quick links