Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Human foamy virus integrase fails to catalyse the integration of a circular DNA molecule containing an LTR junction sequence

Abstract

The presence of closed circular forms of the linear DNA genome of human foamy virus (HFV) has not been established. The ability of the HFV integrase (IN) to catalyse the integration of these circular forms (termed 2 long terminal repeat (LTR) circles) was investigated, with a view to producing a novel hybrid vector. To this end, a construct was made containing, in addition to the enhanced green fluorescent protein (eGFP) marker gene, the last 27 bp of the 3’ U5 LTR region of HFV fused to the first 28 bp of the 5’ U3 LTR, the latter representing a 2LTR circle. Marker gene expression following transfection of both 293 and 293T cells indicated that the level of integration was not significantly increased by the HFV IN. Moreover, correctly integrated provirus-like forms of the input plasmid could not be detected by PCR. Taken together, these results show that the HFV IN is not able to integrate a circular molecule containing an LTR junction and, hence, the technique is not exploitable as a tool to produce hybrid vectors for gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Coffin JM, Hughes SH, Varmus HE (eds). Retroviruses Cold Spring Harbor Laboratory Press 1997

    Google Scholar 

  2. Varmus H . Retroviruses Science 1988 240: 1427–1435

    Article  CAS  PubMed  Google Scholar 

  3. Fujiwara T, Mizuuchi K . Retroviral DNA integration: structure of an integration intermediate Cell 1988 54: 497–504

    Article  CAS  PubMed  Google Scholar 

  4. Brown PO, Bowerman B, Varmus HE, Bishop JM . Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein Proc Natl Acad Sci USA 1989 86: 2525–2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown PO . Integration of retroviral DNA Curr Top Microbiol Immunol 1990 157: 19–48

    CAS  PubMed  Google Scholar 

  6. Shoemaker C et al. Structure of a cloned circular Moloney murine leukemia virus DNA molecule containing an inverted segment: implications for retrovirus integration Proc Natl Acad Sci USA 1980 77: 3932–3936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luciw PA, Oppermann H, Bishop JM, Varmus HE . Integration and expression of several molecular forms of Rous sarcoma virus DNA used for transfection of mouse cells Mol Cell Biol 1984 4: 1260–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Panganiban AT, Temin HM . Circles with two tandem LTRs are precursors to integrated retrovirus DNA Cell 1984 36: 673–679

    Article  CAS  PubMed  Google Scholar 

  9. Duyk G et al. Circles with two tandem long terminal repeats are specifically cleaved by pol gene-associated endonuclease from avian sarcoma and leukosis viruses: nucleotide sequences required for site-specific cleavage J Virol 1985 56: 589–599

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lobel LI, Murphy JE, Goff SP . The palindromic LTR-LTR junction of Moloney murine leukemia virus is not an efficient substrate for proviral integration J Virol 1989 63: 2629–2637

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lobel LI, Murphy JE, Goff SP . The palindromic LTR-LTR junction of Moloney murine leukemia virus is not an efficient substrate for proviral integration Hooks JJ, Detrick-Hooks B. Spumavirinae: foamy virus group infections: comparative aspects and diagnosis. In: Kurstak E, Kurstak C (eds). Comparative Diagnosis of Viral Diseases, vol IV. Academic Press: London, 1981, pp 599–618.

  12. Mergia A, Leung NJ, Blackwell J . Cell tropism of the simian foamy virus type 1 (SFV-1) J Med Primatol 1996 25: 2–7

    Article  CAS  PubMed  Google Scholar 

  13. Schweizer M et al. Markers of foamy virus infections in monkeys, apes, and accidentally infected humans: appropriate testing fails to confirm suspected foamy virus prevalence in humans AIDS Res Hum Retrovir 1995 11: 161–170

    Article  CAS  PubMed  Google Scholar 

  14. Schweizer M et al. Simian foamy virus isolated from an accidentally infected human individual J Virol 1997 71: 4821–4824

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Heneine W et al. Identification of a human population infected with simian foamy viruses Nat Med 1998 4: 403–407

    Article  CAS  PubMed  Google Scholar 

  16. Vassilopoulos G, Trobridge G, Josephson NC, Russell DW . Gene transfer into murine hematopoietic stem cells with helper-free foamy virus vectors Blood 2001 98: 604–609

    Article  CAS  PubMed  Google Scholar 

  17. Herchenroder O et al. Infectious proviral clones of chimpanzee foamy virus (SFVcpz) generated by long PCR reveal close functional relatedness to human foamy virus Virology 1995 214: 685–689

    Article  CAS  PubMed  Google Scholar 

  18. Herchenroder O et al. Isolation, cloning, and sequencing of simian foamy viruses from chimpanzees (SFVcpz): high homology to human foamy virus (HFV) Virology 1994 201: 187–199

    Article  CAS  PubMed  Google Scholar 

  19. Sauer B . Manipulation of transgenes by site-specific recombination: use of Cre recombinase Meth Enzymol 1993 225: 890–900

    Article  CAS  Google Scholar 

  20. Lieber A, He CY, Kirillova I, Kay MA . Recombinant adenoviruses with large deletions generated by Cre-mediated excision exhibit different biological properties compared with first-generation vectors in vitro and in vivo J Virol 1996 70: 8944–8960

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hardy S et al. Construction of adenovirus vectors through Cre-lox recombination J Virol 1997 71: 1842–1849

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tan BT, Wu L, Berk AJ . An adenovirus-Epstein–Barr virus hybrid vector that stably transforms cultured cells with high efficiency J Virol 1999 73: 7582–7589

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Vanin EF et al. Development of high-titer retroviral producer cell lines by using Cre-mediated recombination J Virol 1997 71: 7820–7826

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Feng M et al. Stable in vivo gene transduction via a novel adenoviral/retroviral chimeric vector Nat Biotechnol 1997 15: 866–870

    Article  CAS  PubMed  Google Scholar 

  25. Caplen NJ . Gene therapy: different strategies for different applications. American Society of Gene Therapy: First Annual Meeting, Seattle, Washington, USA, 28–31 May 1998 Mol Med Today 1998 4: 374–375

    Article  CAS  PubMed  Google Scholar 

  26. Reynolds PN, Feng M, Curiel DT . Chimeric viral vectors – the best of both worlds? Mol Med Today 1999 5: 25–31

    Article  CAS  PubMed  Google Scholar 

  27. Duisit G, Salvetti A, Moullier P, Cosset FL . Functional characterization of adenoviral/retroviral chimeric vectors and their use for efficient screening of retroviral producer cell lines Hum Gene Ther 1999 10: 189–200

    Article  CAS  PubMed  Google Scholar 

  28. Yoshida Y, Emi N, Hamada H . VSV-G-pseudotyped retroviral packaging through adenovirus-mediated inducible gene expression Biochem Biophys Res Commun 1997 232: 379–382

    Article  CAS  PubMed  Google Scholar 

  29. Bilbao G et al. Adenoviral/retroviral vector chimeras: a novel strategy to achieve high-efficiency stable transduction in vivo FASEB J 1997 11: 624–634

    Article  CAS  PubMed  Google Scholar 

  30. Ramsey WJ et al. Adenovirus vectors as transcomplementing templates for the production of replication defective retroviral vectors Biochem Biophys Res Commun 1998 246: 912–919

    Article  CAS  PubMed  Google Scholar 

  31. Murphy SJ et al. Novel integrating adenoviral/retroviral hybrid vector for gene therapy Hum Gene Ther 2002 13: 745–760

    Article  CAS  PubMed  Google Scholar 

  32. Zheng C, Baum BJ, Iadarola MJ . O'Connell B.C. Genomic integration and gene expression by a modified adenoviral vector Nat Biotechnol 2000 18: 176–180

    Article  CAS  PubMed  Google Scholar 

  33. Link CJ . Adenoviral vectors go retro Nat Biotechnol 2000 18: 150–151

    Article  CAS  PubMed  Google Scholar 

  34. Darquet AM et al. A new DNA vehicle for nonviral gene delivery: supercoiled minicircle Gene Therapy 1997 4: 1341–1349

    Article  CAS  PubMed  Google Scholar 

  35. Enssle J et al. An active foamy virus integrase is required for virus replication J Gen Virol 1999 80: 1445–1452

    Article  CAS  PubMed  Google Scholar 

  36. Scott SD, Marples B . Comment on the use of the cre/loxP recombinase system for gene therapy vectors Gene Therapy 2000 7: 1706

    Article  CAS  PubMed  Google Scholar 

  37. Sauer B, Henderson N . Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1 Proc Natl Acad Sci USA 1988 85: 5166–5170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sternberg N, Hamilton D . Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites J Mol Biol 1981 150: 467–486

    Article  CAS  PubMed  Google Scholar 

  39. Imrich H, Heinkelein M, Herchenroder O, Rethwilm A . Primate foamy virus pol proteins are imported into the nucleus J Gen Virol 2000 81: 2941–2947

    Article  CAS  PubMed  Google Scholar 

  40. Russell RA et al. The R region found in the human foamy virus long terminal repeat is critical for both gag and pol protein expression J Virol 2001 75: 6817–6824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gu H, Zou YR, Rajewsky K . Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting Cell 1993 73: 1155–1164

    Article  CAS  PubMed  Google Scholar 

  42. Gu H, Zou YR, Rajewsky K . Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting Neil S, Martin P, Ikeda I, Collins M. Maturation-dependent transduction of macrophages by HIV-based vectors. 9th Meeting of the European Society of Gene Therapy, 2–4 November, Turkey, 2001.

  43. Laemmli UK . Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Nature 1970 277: 680–685

    Article  Google Scholar 

  44. Towbin H, Staehelin T, Gordon J . Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications Proc Natl Acad Sci USA 1970 76: 4350–4354

    Article  Google Scholar 

  45. Tosswill JHC, Taylor GP, Clewley JP, Weber JN . Quantification of proviral DNA load in human T-cell leukaemia virus type I infections J Virol Meth 1998 75: 21–26

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Wellcome Trust, The Jefferiss Research Trust and The Imperial Cancer Research Fund. We would like to thank Dr Richard Vile and Dr Stephen Murphy at the MAYO Institute, Rochester, MN, USA for helpful discussion.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, R., Critchley, R., Vassaux, G. et al. Human foamy virus integrase fails to catalyse the integration of a circular DNA molecule containing an LTR junction sequence. Gene Ther 9, 1326–1332 (2002). https://doi.org/10.1038/sj.gt.3301795

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301795

Keywords

This article is cited by

Search

Quick links