Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Differential effects of angiostatin, endostatin and interferon-α1 gene transfer on in vivo growth of human breast cancer cells

Abstract

The administration of different angiogenesis inhibitors by gene transfer has been shown to result in inhibition of tumor growth in animal tumor models, but the potency of these genes has been only partially evaluated in comparative studies to date. To identify the most effective anti-angiogenic molecule for delivery by retroviral vectors, we investigated the effects of angiostatin, endostatin and interferon(IFN)-α1 gene transfer in in vivo models of breast cancer induced neovascularization and tumor growth. Moloney leukemia virus-based retroviral vectors for expression of murine angiostatin, endostatin and IFN-α1 were generated, characterized, and used to transduce human breast cancer cell lines (MCF7 and MDA-MB435). Secretion of the recombinant proteins was confirmed by biological and Western blotting assays. Their production did not impair in vitro growth of these breast cancer cells nor their viability, and did not interfere with the expression of angiogenic factors. However, primary endothelial cell proliferation and migration in vitro were inhibited by supernatants of the transduced cells containing angiostatin, endostatin, and IFN-α1. Stable gene transfer of the IFN-α1 cDNA by retroviral vectors in both MCF7 and MDA-MB435 cells resulted in a marked and long-lasting inhibition of tumor growth in nude mice that was associated with reduced vascularization. Endostatin reduced the in vivo growth of MDA-MB435, but not MCF7 cells, despite similar levels of in vivo production, and angiostatin did not impair the in vivo growth of either cell line. These findings indicate heterogeneity in the therapeutic efficacy of angiostatic molecules delivered by viral vectors and suggest that gene therapy with IFN-α1 and endostatin might be useful for treatment of breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kong HL, Crystal RG . Gene therapy strategies for tumor antiangiogenesis J Natl Cancer Inst 1998 90: 273–286

    Article  CAS  PubMed  Google Scholar 

  2. Cao Y . Endogenous angiogenesis inhibitors and their therapeutic implications Int J Biochem Cell Biol 2001 33: 357–369

    Article  CAS  PubMed  Google Scholar 

  3. O'Reilly MS et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma Cell 1994 79: 315–328

    Article  CAS  PubMed  Google Scholar 

  4. O'Reilly MS et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth Cell 1997 88: 277–285

    Article  CAS  PubMed  Google Scholar 

  5. O'Reilly MS, Holmgren L, Chen C, Folkman J . Angiostatin induces and sustains dormancy of human primary tumors in mice Nat Med 1996 2: 689–692

    Article  CAS  PubMed  Google Scholar 

  6. Boehm T, Folkman J, Browder T, O'Reilly MS . Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance Nature 1997 390: 404–407

    Article  CAS  PubMed  Google Scholar 

  7. Gutterman JU . Cytokine therapeutics: lessons from interferon alpha Proc Natl Acad Sci USA 1994 91: 1198–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brouty-Boye D, Zetter BR . Inhibition of cell motility by interferon Science 1980 208: 516–518

    Article  CAS  PubMed  Google Scholar 

  9. Slaton JW et al. Interferon-alpha-mediated down-regulation of angiogenesis-related genes and therapy of bladder cancer are dependent on optimization of biological dose and schedule Clin Cancer Res 1999 5: 2726–2734

    CAS  PubMed  Google Scholar 

  10. Ferrantini M, Belardelli F . Gene therapy of cancer with interferon: lessons from tumor models and perspectives for clinical applications Semin Cancer Biol 2000 10: 145–157

    Article  CAS  PubMed  Google Scholar 

  11. Albini A et al. Inhibition of angiogenesis and vascular tumor growth by interferon-producing cells: a gene therapy approach Am J Pathol 2000 156: 1381–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuo CJ et al. Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer Proc Natl Acad Sci USA 2001 98: 4605–4610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rozera C et al. Interferon (IFN)-beta gene transfer into TS/A adenocarcinoma cells and comparison with IFN-alpha: differential effects on tumorigenicity and host response Am J Pathol 1999 154: 1211–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cao Y et al. Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases J Clin Invest 1998 101: 1055–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feldman AL et al. Antiangiogenic gene therapy of cancer utilizing a recombinant adenovirus to elevate systemic endostatin levels in mice Cancer Res 2000 60: 1503–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gasparini G, Harris AL . Clinical importance of the determination of tumor angiogenesis in breast carcinoma: much more than a new prognostic tool J Clin Oncol 1995 13: 765–782

    Article  CAS  PubMed  Google Scholar 

  17. Gasparini G et al. Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma J Natl Cancer Inst 1997 89: 139–147

    Article  CAS  PubMed  Google Scholar 

  18. Chen QR, Kumar D, Stass SA, Mixson AJ . Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice Cancer Res 1999 59: 3308–3312

    CAS  PubMed  Google Scholar 

  19. Sacco MG et al. Liposome-delivered angiostatin strongly inhibits tumor growth and metastasization in a transgenic model of spontaneous breast cancer Cancer Res 2000 60: 2660–2665

    CAS  PubMed  Google Scholar 

  20. Sauter BV et al. Adenovirus-mediated gene transfer of endostatin in vivo results in high level of transgene expression and inhibition of tumor growth and metastases Proc Natl Acad Sci USA 2000 97: 4802–4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Indraccolo S et al. Effects of angiostatin gene transfer on functional properties and in vivo growth of Kaposi's sarcoma cells Cancer Res 2001 61: 5441–5446

    CAS  PubMed  Google Scholar 

  22. Palmer TD, Rosman GJ, Osborne WR, Miller AD . Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes Proc Natl Acad Sci USA 1991 88: 1330–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bergers G et al. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice Science 1999 284: 808–812

    Article  CAS  PubMed  Google Scholar 

  24. Pfeffer LM et al. Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons Cancer Res 1998 58: 2489–2499

    CAS  PubMed  Google Scholar 

  25. Belardelli F . Role of interferons and other cytokines in the regulation of the immune response APMIS 1995 103: 161–179

    Article  CAS  PubMed  Google Scholar 

  26. Belardelli F, Gresser I . The neglected role of type I interferon in the T-cell response: implications for its clinical use Immunol Today 1996 17: 369–372

    Article  CAS  PubMed  Google Scholar 

  27. Yao L et al. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12 Blood 1999 93: 1612–1621

    CAS  PubMed  Google Scholar 

  28. Dvorak HF, Gresser I . Microvascular injury in pathogenesis of interferon-induced necrosis of subcutaneous tumors in mice J Natl Cancer Inst 1989 81: 497–502

    Article  CAS  PubMed  Google Scholar 

  29. Thomas H, Balkwill FR . Effects of interferons and other cytokines on tumors in animals: a review Pharmacol Ther 1991 52: 307–330

    Article  CAS  PubMed  Google Scholar 

  30. Ezekowitz RA, Mulliken JB, Folkman J . Interferon alfa-2a therapy for life-threatening hemangiomas of infancy N Engl J Med 1992 326: 1456–1463

    Article  CAS  PubMed  Google Scholar 

  31. Krown SE . Interferon-alpha: evolving therapy for AIDS-associated Kaposi's sarcoma J Interfer Cytok Res 1998 18: 209–214

    Article  CAS  Google Scholar 

  32. Sidky YA, Borden EC . Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses Cancer Res 1987 47: 5155–5161

    CAS  PubMed  Google Scholar 

  33. Dinney CP et al. Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-alpha administration Cancer Res 1998 58: 808–814

    CAS  PubMed  Google Scholar 

  34. Singh RK et al. Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas Proc Natl Acad Sci USA 1995 92: 4562–4566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oliveira IC, Sciavolino PJ, Lee TH, Vilcek J . Downregulation of interleukin 8 gene expression in human fibroblasts: unique mechanism of transcriptional inhibition by interferon Proc Natl Acad Sci USA 1992 89: 9049–9053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gohji K et al. Human recombinant interferons-beta and -gamma decrease gelatinase production and invasion by human KG-2 renal-carcinoma cells Int J Cancer 1994 58: 380–384

    Article  CAS  PubMed  Google Scholar 

  37. Krall W, Kohn DB . Expression levels by retroviral vectors based upon the N2 and the MFG backbones Gene Therapy 1996 3: 365

    CAS  PubMed  Google Scholar 

  38. Indraccolo S et al. Generation of expression plasmids for angiostatin, endostatin and TIMP-2 for cancer gene therapy Int J Biol Markers 1999 14: 251–256

    Article  CAS  PubMed  Google Scholar 

  39. Miller AD, Rosman GJ . Improved retroviral vectors for gene transfer and expression Biotechniques 1989 7: 980–982

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Klein D et al. Rapid identification of viable retrovirus-transduced cells using the green fluorescent protein as a marker Gene Therapy 1997 4: 1256–1260

    Article  CAS  PubMed  Google Scholar 

  41. Indraccolo S et al. Pseudotyping of Moloney leukemia virus-based retroviral vectors with simian immunodeficiency virus envelope leads to targeted infection of human CD4+ lymphoid cells Gene Therapy 1998 5: 209–217

    Article  CAS  PubMed  Google Scholar 

  42. Albini A et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells Cancer Res 1987 47: 3239–3245

    CAS  PubMed  Google Scholar 

  43. Belardelli F et al. Studies on the expression of spontaneous and induced interferons in mouse peritoneal macrophages by means of monoclonal antibodies to mouse interferons J Gen Virol 1987 68: 2203–2212

    Article  CAS  PubMed  Google Scholar 

  44. De Giovanni C et al. Immunological and non-immunological influence of H-2Kb gene transfection on the metastatic ability of B16 melanoma cells Int J Cancer 1991 48: 270–276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr E Lechman for the MFG retroviral vector; Dr E Shewach for the anti-Ly-6C antibody; Dr V Tosello for cytofluorimetric analysis; Mr P Gallo for artwork and Ms P Segato for help in the preparation of the manuscript. This work was supported by grants from the MURST 40% and 60%, the Italian Association for Cancer Research (AIRC), the Ministero della Sanità Programma Nazionale Ricerca sull'AIDS, the Italian Foundation for Cancer Research (FIRC), the Fondazione Cassa di Risparmio di Padova e Rovigo, the CNR PF Biotecnologie.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Indraccolo, S., Gola, E., Rosato, A. et al. Differential effects of angiostatin, endostatin and interferon-α1 gene transfer on in vivo growth of human breast cancer cells. Gene Ther 9, 867–878 (2002). https://doi.org/10.1038/sj.gt.3301703

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301703

Keywords

This article is cited by

Search

Quick links