Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy

Abstract

Neovascularisation (NV) within the eye often results in visual loss. Vascular endothelial growth factor (VEGF) has been implicated in the development of ocular NV. Previous studies have shown that VEGF antagonists successfully suppressed retinal and choroidal NV in animal models. However, the systemic approach and transient nature of the delivery systems used in these studies hinder therapeutic application. To achieve stable and localised ocular anti-angiogenic therapy, we explored the use of recombinant adeno-associated virus (rAAV)-mediated secretion gene therapy (SGT). In this study, we generated a rAAV vector encoding soluble VEGF receptor 1, sFlt-1 (AAV-CMV.sflt) and determined its ability to inhibit cautery-induced corneal NV and laser-induced choroidal NV. Delivery of AAV-CMV.sflt into the anterior chamber resulted in transgene expression in the iris pigment epithelium and corneal endothelium, which reduced the development of corneal NV in the stroma of cauterised rats by 36% compared with cauterised control groups (P = 0.009). Subretinal delivery of AAV-CMV.sflt near the equator of the eye also suppressed choroidal NV at the laser lesions around the optic nerve by 19% (P = 0.002), indicating that there was diffusion of the secreted anti-angiogenic protein across the retina. Both results suggest that the long-term suppression of ocular NV is possible through the use of stable rAAV-mediated SGT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other disease Nat Med 1995 1: 27–31

    Article  CAS  PubMed  Google Scholar 

  2. Macular Photocoagulation Study Group.. Five-year follow-up of fellow eyes of patients with age-related macular degeneration and unilateral extrafoveal choroidal neovascularisation Arch Ophthalmol 1993 111: 1189–1199

  3. Lee P, Wang CC, Adamis AP . Ocular neovascularisation: an epidemiologic review Surv Ophthalmol 1998 43: 245–269

    Article  CAS  PubMed  Google Scholar 

  4. Plate KH, Weich HA, Breier G, Risau W . Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vitro Nature 1992 359: 845–848

    Article  CAS  PubMed  Google Scholar 

  5. Koch AE et al. Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis J Immunol 1994 142: 4149–4156

    Google Scholar 

  6. Kvanta A, Algvere PV, Berglin L, Seregard S . Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor Invest Ophthalmol Vis Sci 1996 37: 1929–1934

    CAS  PubMed  Google Scholar 

  7. Lopez P et al. Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes Invest Ophthalmol Vis Sci 1996 37: 855–868

    CAS  PubMed  Google Scholar 

  8. Kliffen M et al. Increased expression of angiogenic growth factors in age-related maculopathy Br J Ophthalmol 1997 81: 154–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boulton M, Foreman D, Williams G, McLeod D . VEGF localisation in diabetic retinopathy Br J Ophthalmol 1998 82: 561–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith G et al. Immunolocalisation of the VEGF receptors FLT-1, KDR and FLT-4 in diabetic retinopathy Br J Ophthalmol 1999 83: 486–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Philipp W, Speicher L, Humpel C . Expression of vascular endothelial growth factor and its receptors in inflamed and vascularised human corneas Invest Ophthalmol Vis Sci 2000 41: 2514–2522

    CAS  PubMed  Google Scholar 

  12. Spilsbury K et al. Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularisation Am J Pathol 2000 157: 135–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Okamoto N et al. Transgenic mice with increased expression of vascular endothelial growth factor in the retina Am J Pathol 1997 151: 281–291

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwesinger C et al. Intrachoroidal neovascularisation in transgenic mice overexpressing vascular endothelial growth factor in the retinal pigment epithelium Am J Pathol 2001 158: 1161–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ali RR et al. Adeno-associated virus gene transfer to mouse retina Hum Gene Ther 1998 9: 81–86

    Article  CAS  PubMed  Google Scholar 

  16. Rolling F et al. Evaluation of adeno-associated virus-mediated gene transfer into the rat retina by clinical fluorescence photography Hum Gene Ther 1999 10: 641–648

    Article  CAS  PubMed  Google Scholar 

  17. Dudus L et al. Persistent transgene product in retina, optic nerve and brain after intraocular injection of rAAV Vision Res 1999 38: 2545–2553

    Article  Google Scholar 

  18. Bennett J, Duan D, Engelhardt JF, Maguire A . Real-time, noninvasive in vivo assessment of adeno-associated virus-mediated retinal transduction Invest Ophthalmol Vis Sci 1997 38: 2857–2963

    CAS  PubMed  Google Scholar 

  19. Flannery J et al. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus Proc Natl Acad Sci USA 1997 94: 6916–6921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pierce E et al. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularisation Proc Natl Acad Sci USA 1995 92: 905–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yi XV et al. Vascular endothelial growth factor expression in choroidal neovascularisation in rats Graefe's Arch Clin Exp Ophthalmol 1997 2235: 313–319

    Article  Google Scholar 

  22. Shen WY et al. Expression of cell adhesion molecules and vascular endothelial growth factor in experimental choroidal neovascularisation in the rat Br J Ophthalmol 1998 82: 1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hart WM Jr . Mosby Year Book Inc 1992

  24. Marmor MF . Control of subretinal fluid: experimental and clinical studies Eye 1990 4: 340–344

    Article  PubMed  Google Scholar 

  25. Marmor MF, Negi A, Maurice DM . Kinetics of macromolecules injected into the subretinal space Exp Eye Res 1985 40: 687–696

    Article  CAS  PubMed  Google Scholar 

  26. Edelman JL, Castro MR, Wen Y . Correlation of VEGF expression by leukocytes with the growth and regression of blood vessels in the rat cornea Invest Ophthalmol Vis Sci 1999 40: 1112–1123

    CAS  PubMed  Google Scholar 

  27. Lai CM et al. Inhibition of angiogenesis by adenovirus-mediated sFlt-1 expression in a rat model of corneal neovascularisation Hum Gene Ther 2001 12: 1299–1310

    Article  CAS  PubMed  Google Scholar 

  28. Kendall RL, Thomas KA . Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor Proc Natl Acad Sci USA 1993 90: 10705–10709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goldman CK et al. Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate Proc Natl Acad Sci USA 1998 95: 8795–8880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kong HL et al. Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular domain of the flt-1 vascular endothelial growth factor receptor Hum Gene Ther 1998 9: 823–833

    Article  CAS  PubMed  Google Scholar 

  31. Husain D et al. Effects of photodynamic therapy using verteporfin on experimental choroidal neovascularisation and normal retina and choroid up to 7 weeks after treatment Invest Ophthalmol Vis Sci 1999 40: 2322–2331

    CAS  PubMed  Google Scholar 

  32. Macular Photocoagulation Study Group. Macular Photocoagulation Study Group. Persistent and recurrent neovascularisation after laser photocoagulation for subfoveal choroidal neovascularisation of age-related macular degeneration Arch Ophthalmol 1994 112: 489–499

  33. Thomas MA et al. Visual results after surgical removal of subfoveal choroidal neovascular membranes Ophthalmol 1994 101: 1384–1396

    Article  CAS  Google Scholar 

  34. Schnurrbusch UEK et al. Histological findings of surgically excised choroidal neovascular membranes after photodynamic therapy Br J Ophthalmol 2001 85: 1086–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mori A et al. Soluble Flt-1 gene therapy for peritoneal metastases using HVJ-cationic liposomes Gene Therapy 2000 7: 1027–1033

    Article  CAS  PubMed  Google Scholar 

  36. Kendall RL, Wang G, Thomas KA . Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerisation with KDR Biochem Biophys Res Commun 1996 226: 324–328

    Article  CAS  PubMed  Google Scholar 

  37. Robinson GS et al. Oligodeoxynucleotides inhibit retinal neovascularisation in a murine model of proliferative retinopathy Proc Natl Acad Sci USA 1996 93: 4851–4856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aiello L et al. Suppression of retinal neovascularisation in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins Proc Natl Acad Sci USA 1995 92: 10457–10461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ozaki H et al. Blockade of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularisation Am J Pathol 2000 156: 697–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shen WY et al. Pre-clinical evaluation of a phosphorothioate oligonucleotide in the retina of rhesus monkey Lab Invest 2002 82: 167–182

    Article  CAS  PubMed  Google Scholar 

  41. Honda M et al. Experimental subretinal neovascularisation is inhibited by adenovirus-mediated soluble VEGF/flt-1 receptor gene transfection: a role of VEGF and possible treatment for SRN in age-related macular degeneration Gene Therapy 2000 7: 978–985

    Article  CAS  PubMed  Google Scholar 

  42. Hauswirth WW, Beaufrere LO . Ocular gene therapy: quo vadis? Invest Ophthalmol Vis Sci 2000 41: 2821–2826

    CAS  PubMed  Google Scholar 

  43. Mori A et al. Pigment epithelium-derived factor inhibits retinal and choroidal neovascularisation J Cell Physiol 2001 188: 253–263

    Article  CAS  PubMed  Google Scholar 

  44. Lai CC et al. Suppression of choroidal neovascularisation by adeno-associated virus vector expressing angiostatin Invest Ophthalmol Vis Sci 2001 42: 2401–2407

    CAS  PubMed  Google Scholar 

  45. Blaauwgeers HGT et al. Polarised vascular endothelial growth factor secretion by human retinal pigment epithelium and localisation of vascular endothelial growth factor receptors on the inner choriocapillaris Am J Pathol 1999 155: 421–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lai YKY, Rolling F, Baker E, Rakoczy PE . Kinetics of efficient recombinant adeno-associated virus transduction in retinal pigment epithelial cells Exp Cell Res 2001 267: 184–192

    Article  CAS  PubMed  Google Scholar 

  47. Lai YKY, Rolling F, Baker E, Rakoczy PE . Kinetics of efficient recombinant adeno-associated virus transduction in retinal pigment epithelial cells Haberman RA, Kroner-Lux G, Samulski RJ. Production of recombinant adeno-associated viral vectors. In: Dracopoli NC et al. (ed.). Current Protocols in Human Genetics. John Wiley: New York, 1994, pp 12.9.1–12.9.17

  48. Lambert VI . Influence of plasminogen activator inhibitor type on choroidal neovascularisation FASEB J 2001 15: 1021–1027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Tammy Zaknich for animal photography, Hieu Van Nguyen for preparation of paraffin-embedded sections, and Dr Dru Daniels and Dr Kevin Chee for assisting with grading of eyes. We are also grateful to Dr Anthony Kicic and Pamela Slobe for proofreading the manuscript. This work was supported by grants from the Juvenile Diabetes Research Foundation, USA, and the Lions Eye Institute, Western Australia.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, Y., Shen, W., Brankov, M. et al. Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy. Gene Ther 9, 804–813 (2002). https://doi.org/10.1038/sj.gt.3301695

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301695

Keywords

This article is cited by

Search

Quick links