Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Transduction of human neural progenitor cells using recombinant adeno-associated viral vectors

Abstract

Human neural progenitor cells (hNPCs) represent an attractive source for cell therapy of neurological disorders. Genetic modification of hNPCs may allow a controlled release of therapeutic proteins, suppress immune rejection, or produce essential neurotransmitters. In search of an effective gene delivery vehicle, we evaluated the efficiency of a recombinant adeno-associated viral (rAAV) vector expressing enhanced green fluorescent protein (CAGegfp). Our study demonstrated that CAGegfp efficiently transduced both proliferating and differentiated hNPCs in vitro. EGFP expression was detected as early as 1 day after exposure to CAGegfp and was detectable for up to 4 months. Following transduction, the growth rate of hNPCs slowed down, but they were still able to differentiate into neurons and glia. Furthermore, CAGegfp-modified hNPCs survived, differentiated and expressed EGFP after transplanting into spinal cord of adult rats. Our results indicated that rAAV vectors might be a useful tool in hNPC-based cell and gene therapy for neurological disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gage F.H. . Cell therapy Nature 1998 392: 18 18

    CAS  PubMed  Google Scholar 

  2. Diener P.S., Bregman B.S. . Fetal spinal cord transplants support the development of target reaching and coordinated postural adjustments after neonatal cervical spinal cord injury J Neurosci 1998 18: 763 763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Giovanini M.A. et al. Characteristics of human fetal spinal cord grafts in the adult rat spinal cord: influences of lesion and grafting conditions Exp Neurol 1997 148: 523 523

    Article  CAS  PubMed  Google Scholar 

  4. Fisher L.J. . Neural precursor cells: applications for the study and repair of the central nervous system Neurobiol Dis 1997 4: 1 1

    Article  CAS  PubMed  Google Scholar 

  5. Bjorklund A., Lindvall O. . Cell replacement therapies for central nervous system disorders Nat Neurosci 2000 3: 537 537

    Article  CAS  PubMed  Google Scholar 

  6. Lindvall O. et al. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson's disease. A detailed account of methodology and a 6-month follow-up Arch Neurol 1989 46: 615 615

    Article  CAS  PubMed  Google Scholar 

  7. Reier P.J. et al. Workshop on intraspinal transplantation and clinical application J Neurotrauma 1994 11: 369 369

    Article  CAS  PubMed  Google Scholar 

  8. Barinaga M. . Fetal neuron grafts pave the way for stem cell therapies Science 2000 287: 1421 1421

    Article  CAS  PubMed  Google Scholar 

  9. Whittemore S.R., Eaton M.J., Onifer S.M. . Gene therapy and the use of stem cells for central nervous system regeneration Adv Neurol 1997 72: 113 113

    CAS  PubMed  Google Scholar 

  10. Snyder E.Y. et al. Potential of neural ‘stem-like’ cells for gene therapy and repair of the degenerating central nervous system Adv Neurol 1997 72: 121 121

    CAS  PubMed  Google Scholar 

  11. Shihabuddin L.S., Palmer T.D., Gage F.H. . The search for neural progenitor cells: prospects for the therapy of neurodegenerative disease Mol Med Today 1999 5: 474 474

    Article  CAS  PubMed  Google Scholar 

  12. Snyder E.Y., Macklis J.D. . Multipotent neural progenitor or stem-like cells may be uniquely suited for therapy for some neurodegenerative conditions Clin Neurosci 1995 3: 310 310

    PubMed  Google Scholar 

  13. Park K.I. et al. Transplantation of neural progenitor and stem cells: developmental insights may suggest new therapies for spinal cord and other CNS dysfunction J Neurotrauma 1999 16: 675 675

    Article  CAS  PubMed  Google Scholar 

  14. Martinez-Serrano A., Bjorklund A. . Immortalized neural progenitor cells for CNS gene transfer and repair Trends Neurosci 1997 20: 530 530

    Article  CAS  PubMed  Google Scholar 

  15. Shihabuddin L.S., Ray J., Gage F.H. . Stem cell technology for basic science and clinical applications Arch Neurol 1999 56: 29 29

    Article  CAS  PubMed  Google Scholar 

  16. McKay R. . Stem cells in the central nervous system Science 1997 276: 66 66

    Article  CAS  PubMed  Google Scholar 

  17. Reynolds B.A., Tetzlaff W., Weiss S. . A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes J Neurosci 1992 12: 4565 4565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Svendsen C.N., Caldwell M.A. . Neural stem cells in the developing central nervous system: implications for cell therapy through transplantation Prog Brain Res 2000 127: 13 13

    Article  CAS  PubMed  Google Scholar 

  19. Svendsen C.N. et al. A new method for the rapid and long-term growth of human neural precursor cells J Neurosci Meth 1998 85: 141 141

    Article  CAS  Google Scholar 

  20. Vescovi A.L. et al. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation Exp Neurol 1999 156: 71 71

    Article  CAS  PubMed  Google Scholar 

  21. Carpenter M.K. et al. In vitro expansion of a multipotent population of human neural progenitor cells Exp Neurol 1999 158: 265 265

    Article  CAS  PubMed  Google Scholar 

  22. Fricker R.A. et al. Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain J Neurosci 1999 19: 5990 5990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johansson C.B. et al. Neural stem cells in the adult human brain Exp Cell Res 1999 253: 733 733

    Article  CAS  PubMed  Google Scholar 

  24. Palmer T.D. et al. Cell culture. Progenitor cells from human brain after death Nature 2001 411: 42 42

    Article  CAS  PubMed  Google Scholar 

  25. Roy N.S. et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus Nat Med 2000 6: 271 271

    Article  CAS  PubMed  Google Scholar 

  26. Flax J.D. et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes Nat Biotechnol 1998 16: 1033 1033

    Article  CAS  PubMed  Google Scholar 

  27. Ostenfeld T. et al. Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation Exp Neurol 2000 164: 215 215

    Article  CAS  PubMed  Google Scholar 

  28. Corti O. et al. A single adenovirus vector mediates doxycycline-controlled expression of tyrosine hydroxylase in brain grafts of human neural progenitors Nat Biotechnol 1999 17: 349 349

    Article  CAS  PubMed  Google Scholar 

  29. Sabate O. et al. Transplantation to the rat brain of human neural progenitors that were genetically modified using adenoviruses Nat Genet 1995 9: 256 256

    Article  CAS  PubMed  Google Scholar 

  30. Villa A., Snyder E.Y., Vescovi A., Martinez-Serrano A. . Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS Exp Neurol 2000 161: 67 67

    Article  CAS  PubMed  Google Scholar 

  31. Kaplitt M.G. et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain Nat Genet 1994 8: 148 148

    Article  CAS  PubMed  Google Scholar 

  32. Xiao X., Li J., McCown T.J., Samulski R.J. . Gene transfer by adeno-associated virus vectors into the central nervous system Exp Neurol 1997 144: 113 113

    Article  CAS  PubMed  Google Scholar 

  33. Rabinowitz J.E., Samulski J. . Adeno-associated virus expression systems for gene transfer Curr Opin Biotechnol 1998 9: 470 470

    Article  CAS  PubMed  Google Scholar 

  34. Weihl C. et al. Gene therapy for cerebrovascular disease Neurosurgery 1999 44: 239 239

    Article  CAS  PubMed  Google Scholar 

  35. Berns K.I. . Parvovirus replication Microbiol Rev 1990 54: 316 316

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Muzyczka N. . Use of adeno-associated virus as a general transduction vector for mammalian cells Curr Top Microbiol Immunol 1992 158: 97 97

    CAS  PubMed  Google Scholar 

  37. Du B., Wu P., Boldt-Houle D.M., Terwilliger E.F. . Efficient transduction of human neurons with an adeno-associated virus vector Gene Therapy 1996 3: 254 254

    CAS  PubMed  Google Scholar 

  38. Wu P., Phillips M.I., Bui J., Terwilliger E.F. . Adeno-associated virus vector-mediated transgene integration into neurons and other nondividing cell targets J Virol 1998 72: 5919 5919

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Niwa H., Yamamura K., Miyazaki J. . Efficient selection for high-expression transfectants with a novel eukaryotic vector Gene 1991 108: 193 193

    Article  CAS  PubMed  Google Scholar 

  40. Monahan P.E., Samulski R.J. . AAV vectors: is clinical success on the horizon? Gene Therapy 2000 7: 24 24

    Article  CAS  PubMed  Google Scholar 

  41. Svendsen C.N. et al. Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson's disease Exp Neurol 1997 148: 135 135

    Article  CAS  PubMed  Google Scholar 

  42. Suhonen J.O., Peterson D.A., Ray J., Gage F.H. . Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo Nature 1996 383: 624 624

    Article  CAS  PubMed  Google Scholar 

  43. Caldwell M.A. et al. Growth factors regulate the survival and fate of cells derived from human neurospheres Nat Biotechnol 2001 19: 475 475

    Article  CAS  PubMed  Google Scholar 

  44. Fisher K.J. et al. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis J Virol 1996 70: 520 520

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ferrari F.K., Samulski T., Shenk T., Samulski R.J. . Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors J Virol 1996 70: 3227 3227

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Vincent-Lacaze N. et al. Structure of adeno-associated virus vector DNA following transduction of the skeletal muscle J Virol 1999 73: 1949 1949

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Duan D. et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue J Virol 1998 72: 8568 8568

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sanlioglu S., Duan D., Engelhardt J.F. . Two independent molecular pathways for recombinant adeno-associated virus genome conversion occur after UV-C and E4orf6 augmentation of transduction Hum Gene Ther 1999 10: 591 591

    Article  CAS  PubMed  Google Scholar 

  49. Qing K. et al. Role of tyrosine phosphorylation of a cellular protein in adeno-associated virus 2-mediated transgene expression Proc Natl Acad Sci USA 1997 94: 10879 10879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Forss-Petter S. et al. Transgenic mice expressing beta-galactosidase in mature neurons under neuron-specific enolase promoter control Neuron 1990 5: 187 187

    Article  CAS  PubMed  Google Scholar 

  51. Mizushima S., Nagata S. . pEF-BOS, a powerful mammalian expression vector Nucleic Acids Res 1990 18: 5322 5322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goldman L.A. . Modifications of vectors pEF-BOS, pcDNA1 and pcDNA3 result in improved convenience and expression Biotechniques 1996 21: 1013 1013

    Article  CAS  PubMed  Google Scholar 

  53. Matsuo K. et al. Expression of the rat calmodulin gene II in the central nervous system: a 294-base promoter and 68-base leader segment mediates neuron-specific gene expression in transgenic mice Brain Res 1993 20: 9 9

    CAS  Google Scholar 

  54. Ponnazhagan S., Yoder M.C., Srivastava A. . Adeno-associated virus type 2-mediated transduction of murine hematopoietic cells with long-term repopulating ability and sustained expression of a human globin gene in vivo J Virol 1997 71: 3098 3098

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiao X., Li J., Samulski R.J. . Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector J Virol 1996 70: 8098 8098

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kearns W.G. et al. Recombinant adeno-associated virus (AAV-CFTR) vectors do not integrate in a site-specific fashion in an immortalized epithelial cell line Gene Therapy 1996 3: 748 748

    CAS  PubMed  Google Scholar 

  57. Duan D., Fisher K.J., Burda J.F., Engelhardt J.F. . Structural and functional heterogeneity of integrated recombinant AAV genomes Virus Res 1997 48: 41 41

    Article  CAS  PubMed  Google Scholar 

  58. Rutledge E.A., Russell D.W. . Adeno-associated virus vector integration junctions J Virol 1997 71: 8429 8429

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ponnazhagan S. et al. Lack of site-specific integration of the recombinant adeno-associated virus 2 genomes in human cells Hum Gene Ther 1997 8: 275 275

    Article  CAS  PubMed  Google Scholar 

  60. Nakai H., Storm T.A., Kay M.A. . Recruitment of single-stranded recombinant adeno-associated virus vector genomes and intermolecular recombination are responsible for stable transduction of liver in vivo J Virol 2000 74: 9451 9451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Malik P. et al. Recombinant adeno-associated virus mediates a high level of gene transfer, but less efficient integration in the K562 human hematopoietic cell line J Virol 1997 71: 1776 1776

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Samulski R.J. et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19 EMBO J 1991 10: 3941 3941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martinez-Serrano A. et al. Human neural progenitor cells: better blue than green? Nat Med 2000 6: 483 483

    Article  CAS  PubMed  Google Scholar 

  64. Sieber-Blum M. . Growth factor synergism and antagonism in early neural crest development Biochem Cell Biol 1998 76: 1039 1039

    Article  CAS  PubMed  Google Scholar 

  65. Shihabuddin L.S., Horner P.J., Ray J., Gage F.H. . Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus J Neurosci 2000 20: 8727 8727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McDonald J.W. et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord Nat Med 1999 5: 1410 1410

    Article  CAS  PubMed  Google Scholar 

  67. Xiao X., Li J., Samulski R.J. . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus J Virol 1998 72: 2224 2224

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zolotukhin S. et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield Gene Therapy 1999 6: 973 973

    Article  CAS  PubMed  Google Scholar 

  69. Snyder R.O., Xiao X., Samulski R.J. . Current Protocols in Human Genetics, pp. 121-12124. Wiley 1996

    Google Scholar 

Download references

Acknowledgements

This work was supported by John Sealy Memorial Endowment Fund for Biomedical Research (PW) and the Wellcome Trust (CNS).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, P., Ye, Y. & Svendsen, C. Transduction of human neural progenitor cells using recombinant adeno-associated viral vectors. Gene Ther 9, 245–255 (2002). https://doi.org/10.1038/sj.gt.3301646

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301646

Keywords

This article is cited by

Search

Quick links