Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Brain engraftment of autologous macrophages transduced with a lentiviral flap vector: an approach to complement brain dysfunctions

Abstract

Transplantation of ex vivo gene-corrected autologous cells represents an attractive therapeutic approach for brain diseases. Among the cells of the central nervous system, brain macrophages are promising candidates due to their role in tissue homeostasis and their implication in several neurological diseases. Up to now, gene transfer into macrophages has proven difficult by most currently available gene delivery methods. We describe herein, an efficient transduction of rat bone marrow-derived and brain macrophages with an HIV-1-derived vector containing a central DNA flap and encoding the GFP reporter gene (TRIP-ΔU3-GFP). In primary cultures of macrophages our results show that more than 90% of the cells were transduced by the TRIP vector and that GFP expression remained stable for 1 month without cytopathic effect. In vivo, transplants of transduced macrophages into the striatum of adult rats exhibited long-term expression of GFP up to 3 months. Transduced macrophages were observed around the brain injection site and exhibited the brain macrophage/microglia phenotype. There was no significant sign of astrogliosis around the graft. These results confirm the potential of lentiviral vectors for efficient and stable ex vivo transduction of macrophages. Moreover, transduced autologous macrophages appear as a valuable vehicle for long-term and localized gene expression into the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cortez N., Trejo F., Vergara P., Segovia J. . Primary astrocytes retrovirally transduced with a tyrosine hydroxylase transgene driven by a glial-specific promoter elicit behavioral recovery in experimental parkinsonism J Neurosci Res 2000 59: 39 39

    Article  CAS  PubMed  Google Scholar 

  2. Corti O. et al. A single adenovirus vector mediates doxycycline-controlled expression of tyrosine hydroxylase in brain grafts of human neural progenitors Nat Biotechnol 1999 17: 349 349

    Article  CAS  PubMed  Google Scholar 

  3. Gage F.H., Kawaja M.D., Fisher L.J. . Genetically modified cells: applications for intracerebral grafting Trends Neurosci 14 1991: 328 328

    Google Scholar 

  4. Martinez-Serrano A. . Immortalized neural progenitor cells for CNS gene transfer and repair Trends Neurosci 1997 20: 530 530

    Article  CAS  PubMed  Google Scholar 

  5. Mulligan R. . The basis science of gene therapy Science 1993 260: 926 926

    Article  CAS  PubMed  Google Scholar 

  6. Fisher L.J. et al. Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce L-dopa Neuron 1991 6: 371 371

    Article  CAS  PubMed  Google Scholar 

  7. Nakao N. et al. Overexpressing Cu/Zn superoxide dismutase enhances survival of transplanted neurons in a rat model of Parkinson's disease Nat Med 1995 1: 226 226

    Article  CAS  PubMed  Google Scholar 

  8. Barkats M. et al. Intrastriatal grafts of embryonic mesencephalic rat neurons genetically modified using an adenovirus encoding human Cu/Zn superoxide dismutase Neuroscience 1997 78: 703 703

    Article  CAS  PubMed  Google Scholar 

  9. Krall W.J. et al. Cells expressing human glucocerebrosidase from a retroviral vector repopulate macrophages and central nervous system microglia after murine bone marrow transplantation Blood 1994 83: 2737 2737

    CAS  PubMed  Google Scholar 

  10. Steven A. . Origin of macrophages in the central nervous tissue J Neurol Sci 1993 118: 117 117

    Article  Google Scholar 

  11. Krivit W., Shapiro E.G., Lackman L.A. . Microglia: the effector cell for reconstitution of the central nervous system following bone marrow transplantation for lysosomal and peroxisomal storage diseases Cell Transplant 1995 4: 385 385

    Article  CAS  PubMed  Google Scholar 

  12. Walker S.U., Dobrennis K., Huang M. . Bone marrow transplantation corrects the enzyme defect in numerous of the central nervous sytem in a lysosomal storage disease Proc Natl Acad Sci USA 1994 91: 2970 2970

    Article  Google Scholar 

  13. Walker S.U., Dobrennis K., Huang M. . Bone marrow transplantation corrects the enzyme defect in numerous of the central nervous sytem in a lysosomal storage disease

  14. Yeager AM, Hart C, Pardoll DM. Repopulation by donnor-derived macrophages in the murine central nervous system (CNS) after congenic bone marrow transplantation (BMT): a quantitative study. Blood 1992; 80 (Suppl. 1): Abstr. 269a Proc Nal Acad Sci USA 1998 95: 14944 14944

  15. Byrnes A.P., Wood M.J., Charlton H.M. . Role of T cells in inflammation caused by adenovirus vectors in the brain Gene Therapy 1996 3: 644 644

    CAS  PubMed  Google Scholar 

  16. Ugolini G. . Transneuronal transfer of herpes simplex virus type 1 (HSV 1) from mixed limb nerves to the CNS: I. Sequence of transfer from sensory, motor, and sympathetic nerve fibres to the spinal cord J Comp Neurol 1992 326: 527 527

    Article  CAS  PubMed  Google Scholar 

  17. Costantini L.C. et al. Gene transfer to the nigrostriatal system by hybrid herpes simplex virus/adeno-associated virus amplicon vectors (published erratum appears in Hum Gene Ther 2000; 11: 981) Hum Gene Ther 1999 10: 2481 2481

    Article  CAS  PubMed  Google Scholar 

  18. Costantini L.C., Bakowska J.C., Breakefield X.O., Isacson O. . Gene therapy in the CNS Gene Therapy 2000 7: 93 93

    Article  CAS  PubMed  Google Scholar 

  19. Baszler T.V., Zachary J.F. . Murine retroviral neurovirulence correlates with an enhanced ability of virus to infect selectively, replicate in, and activate resident microglial cells (published erratum appears in Am J Pathol 1991; 138: 1058) Am J Pathol 1991 138: 655 655

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zachary J.F., Baszler T.V., French R.A., Kelley K.W. . Mouse Moloney leukemia virus infects microglia, but not neurons even though it induces motor neuron disease Molec Psych 1997 2: 104 104

    Article  CAS  Google Scholar 

  21. Naldini L. . Lentiviruses as gene transfer agents for delivery to non-dividing cells Curr Opin Biotechnol 1998 9: 457 457

    Article  CAS  PubMed  Google Scholar 

  22. Naldini L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector Science 1996 272: 263 263

    Article  CAS  PubMed  Google Scholar 

  23. Blomer U. et al. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector J Virol 1997 71: 6641 6641

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zufferey R. et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery J Virol 1998 72: 9873 9873

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zennou V. et al. HIV-1 genome nuclear import is mediated by a central DNA flap Cell 2000 101: 173 173

    Article  CAS  PubMed  Google Scholar 

  26. Zennou V. et al. HIV-1 genome nuclear import is mediated by a central DNA flap

  27. Sirven A et al. The human immunodeficiency virus type 1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells Blood; 2000; 96: 4103–4110 Molec Ther 2001 3: 438 438

  28. Yee J., Laporte P., Bouic K. . A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepathocytes Proc Natl Acad Sci USA 1994 91: 9564 9564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Corbeau P., Kraus G., Wong-Staal F. . Transduction of human macrophages using a stable HIV-1/HIV-2-derived gene delivery system Gene Therapy 1998 5: 99 99

    Article  CAS  PubMed  Google Scholar 

  30. Schroers R. et al. Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1-based lentiviral vector system Molec Ther J Am Soc Gene Ther 2000 1: 171 171

    Article  CAS  Google Scholar 

  31. Wada R., Proia R.L. . Microglia activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation Proc Natl Acad Sci USA 2000 97: 10954 10954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Persidsky Y., Zheng J., Miller D., Gendelman H.E. . Mononuclear phagocytes mediate blood–brain barrier compromise and neuronal injury during HIV-1-associated dementia J Leuk Biol 2000 68: 413 413

    CAS  Google Scholar 

  33. Kennedy D.W., Abkowitz J.L. . Kinetics of central nervous system microglial and macrophage engraftment: analysis using a transgenic bone marrow transplantation model Blood 1997 90: 986 986

    CAS  PubMed  Google Scholar 

  34. Bachoud-Levi A.C. et al. Motor and cognitive improvements in patients with Huntington's disease after neural transplantation Lancet 2000 356: 1975 1975

    Article  CAS  PubMed  Google Scholar 

  35. Kordower J.H., Bloch J. . Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease Science 2000 290: 767 767

    Article  CAS  PubMed  Google Scholar 

  36. Kordower J.H., Bloch J. . Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease

  37. Ridet JL, Serguera C, Zennou V. Primary astrocytes: a potent and safe vehicle for ex vivo gene transfer to the CN. (Submitted for publication) Eur J Neurosci 1996 8: 1725 1725

  38. Tushinski R.J. et al. Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy Cell 1982 28: 71 71

    Article  CAS  PubMed  Google Scholar 

  39. Stanley E.R. . Factors regulating macrophage production and growth J Biol Chem 1977 252: 4305 4305

    CAS  PubMed  Google Scholar 

  40. Altmeyer R., Mordelet E., Girard M., Vidal C. . Expression and detection of macrophage-tropic HIV-1 gp120 in the brain using conformation-dependent antibodies Virology 1999 259: 314 314

    Article  CAS  PubMed  Google Scholar 

  41. Mordelet E., Altmeyer R., Girard M., Vidal C. . HIV-1 gp120: expression and subcellular localisation in macrophages/microglia in vitro and in vivo in the rat brain J Neurovirol 1998 4: 360 360

    Google Scholar 

  42. Barclay A.N. . Different reticular elements in rat lymphoid tissue identified by localization of Ia, TH-1 and MRC OX 2 antigens Immunology 1981 44: 727 727

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dijkstra C.D. . The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3 Immunology 1985 54: 589 589

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Balasingam V., Collier B., Yong V.W. . Attenuation of astroglial reactivity by IL-10 Soc Neurosci Abstr 1995 21: 304 304

    Google Scholar 

Download references

Acknowledgements

E Mordelet was supported by fellowships from the Pasteur-Weizmann Foundation and from SIDACTION. This work was supported by ANRS and AFM. We thank R Hellio and P Roux for assistance at the laser confocal microscope which was purchased with the donation from Marcel and Liliane Pollack.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mordelet, E., Kissa, K., Calvo, CF. et al. Brain engraftment of autologous macrophages transduced with a lentiviral flap vector: an approach to complement brain dysfunctions. Gene Ther 9, 46–52 (2002). https://doi.org/10.1038/sj.gt.3301591

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301591

Keywords

This article is cited by

Search

Quick links