Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Nonviral gene delivery to human breast cancer cells by targeted Ad5 penton proteins

Abstract

The capsid proteins of adenovirus serotype 5 (Ad5) are key to the virus’ highly efficient cell binding and entry mechanism. In particular, the penton base plays a significant role in both viral internalization and endosome penetration. We have produced an adenovirus penton fusion protein (HerPBK10) containing moieties for DNA transport and targeted delivery to breast cancer cells. HerPBK10 binds DNA through a polylysine appendage, while the EGF-like domain of the heregulin-α1 isoform is used as the targeting ligand. This ligand binds with high affinity to HER2/3 or HER2/4 heterodimers, which are overexpressed on certain aggressive breast cancers. In addition, this ligand is rapidly internalized after binding, thus adding to the utility of heregulin for targeting. HerPBK10 binds MDA-MB-453 breast cancer cells in a receptor-specific manner, and mediates the entry of a reporter plasmid in MDA-MB-453 cells in culture. Delivery can be competed by excess heregulin peptide, thus confirming receptor specificity. Importantly, the penton segment appears to contribute significantly to enhanced delivery. Complexes containing HerPBK10 and DNA have been optimized to provide targeted gene delivery to breast cancer cells in vitro. We demonstrate that delivery can be accomplished in the presence of serum, thus suggesting a potential use for in vivo delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ilan Y et al. Oral tolerization to adenoviral antigens permits long-term gene expression using recombinant adenoviral vectors J Clin Invest 1997 99: 1098–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang Y, Ertl HC, Wilson JM . MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses Immunity 1994 1: 433–442

    Article  CAS  PubMed  Google Scholar 

  3. Kozarsky KF, Wilson JM . Gene therapy: adenovirus vectors Curr Opin Genet Dev 1993 3: 499–503

    Article  CAS  PubMed  Google Scholar 

  4. Greber UF, Willets M, Webster P, Helenius A . Stepwise dismantling of adenovirus 2 during entry into cells Cell 1993 75: 477–486

    Article  CAS  PubMed  Google Scholar 

  5. Bergelson JM et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5 Science 1997 275: 1320–1323

    Article  CAS  PubMed  Google Scholar 

  6. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment Cell 1993 73: 309–319

    Article  CAS  PubMed  Google Scholar 

  7. Seth P et al. Evidence that the penton base of adenovirus is involved in potentiation of toxicity of Pseudomonas exotoxin conjugated to epidermal growth factor Molec Cell Biol 1984 4: 1528–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karayan L et al. Structural and functional determinants in adenovirus type 2 penton base recombinant protein J Virol 1997 71: 8678–8689

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fominaya J, Wels W . Target cell-specific DNA transfer mediated by a chimeric multidomain protein. Novel non-viral gene delivery system J Biol Chem 1996 271: 10560–10568

    Article  CAS  PubMed  Google Scholar 

  10. Gottschalk S et al. A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells Gene Therapy 1996 3: 48–57

    Google Scholar 

  11. Fisher KJ, Wilson JM . The transmembrane domain of diphtheria toxin improves molecular conjugate gene transfer Biochem J 1997 321: 49–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Medina-Kauwe LK, Kasahara N, Kedes L . 3PO, a novel non-viral gene delivery system using engineered Ad5 penton proteins Gene Therapy 2001 8: 795–803

    Article  CAS  PubMed  Google Scholar 

  13. Bacus SS, Zelnick CR, Plowman G, Yarden Y . Expression of the erbB-2 family of growth factor receptors and their ligands in breast cancers. Implication for tumor biology and clinical behavior Am J Clin Pathol 1994 102: S13–S24

    CAS  PubMed  Google Scholar 

  14. Bacus SS, Zelnick CR, Plowman G, Yarden Y . Expression of the erbB-2 family of growth factor receptors and their ligands in breast cancers. Implication for tumor biology and clinical behavior

  15. Bacus SS, Zelnick CR, Plowman G, Yarden Y . Expression of the erbB-2 family of growth factor receptors and their ligands in breast cancers. Implication for tumor biology and clinical behavior

  16. Bacus SS, Zelnick CR, Plowman G, Yarden Y . Expression of the erbB-2 family of growth factor receptors and their ligands in breast cancers. Implication for tumor biology and clinical behavior

  17. Goldman R, Levy RB, Peles E, Yarden Y . Heterodimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells: a mechanism for receptor transregulation Biochemistry 1990 29: 11024–11028

    Article  CAS  PubMed  Google Scholar 

  18. Hung MC et al. HER-2/neu-targeting gene therapy - a review Gene 1995 159: 65–71

    Article  CAS  PubMed  Google Scholar 

  19. Press MF et al. HER-2/neu oncogene amplification and expression in breast and ovarian cancers Prog Clin Biol Res 1990 354A: 209–221

    CAS  PubMed  Google Scholar 

  20. Slamon DJ et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene Science 1987 235: 177–182

    Article  CAS  PubMed  Google Scholar 

  21. Slamon DJ, Clark GM . Amplification of c-erbB-2 and aggressive human breast tumors? Science 1988 240: 1795–1798

    Article  CAS  PubMed  Google Scholar 

  22. Yarden Y, Weinberg RA . Experimental approaches to hypothetical hormones: detection of a candidate ligand of the neu protooncogene Proc Natl Acad Sci USA 1989 86: 3179–3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Holmes WE et al. Identification of heregulin, a specific activator of p185erbB2 Science 1992 256: 1205–1210

    Article  CAS  PubMed  Google Scholar 

  24. Lenferink AE et al. Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers EMBO J 1998 17: 3385–3397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li W et al. Heregulin is rapidly translocated to the nucleus and its transport is correlated with c-myc induction in breast cancer cells Oncogene 1996 12: 2473–2477

    CAS  PubMed  Google Scholar 

  26. Sliwkowski MX et al. Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin J Biol Chem 1994 269: 14661–14665

    CAS  PubMed  Google Scholar 

  27. Tzahar E et al. ErbB-3 and ErbB-4 function as the respective low and high affinity receptors of all Neu differentiation factor/heregulin isoforms J Biol Chem 1994 269: 25226–25233

    CAS  PubMed  Google Scholar 

  28. Waterman H, Sabanai I, Geiger B, Yarden Y . Alternative intracellular routing of ErbB receptors may determine signaling potency J Biol Chem 1998 273: 13819–13827

    Article  CAS  PubMed  Google Scholar 

  29. Medina-Kauwe LK, Leung V, Wu L, Kedes L . Assessing the binding and endocytosis activity of cellular receptors using GFP-ligand fusions BioTechniques 2000 29: 602–609

    Article  CAS  PubMed  Google Scholar 

  30. Harris CE et al. Receptor-mediated gene transfer to airway epithelial cells in primary culture Am J Resp Cell Molec Biol 1993 9: 441–447

    Article  CAS  Google Scholar 

  31. Han X, Kasahara N, Kan YW . Ligand-directed retroviral targeting of human breast cancer cells Proc Natl Acad Sci USA 1995 92: 9747–9751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao X, Huang L . Potentiation of cationic liposome-mediated gene delivery by polycations Biochemistry 1996 35: 1027–1036

    Article  CAS  PubMed  Google Scholar 

  33. Fominaya J, Uherek C, Wels W . A chimeric fusion protein containing transforming growth factor-α mediates gene transfer via binding to the EGF receptor Gene Therapy 1998 5: 521–530

    Article  CAS  PubMed  Google Scholar 

  34. Uherek C, Fominaya J, Wels W . A modular DNA carrier protein based on the structure of diphtheria toxin mediates target cell-specific gene delivery J Biol Chem 1998 273: 8835–8841

    Article  CAS  PubMed  Google Scholar 

  35. Fender P et al. Adenovirus dodecahedron, a new vector for human gene transfer Nature Biotechnol 1997 15: 52–56

    Article  CAS  Google Scholar 

  36. Prchla E et al. Virus-mediated release of endosomal content in vitro: different behavior of adenovirus and rhinovirus serotype 2 J Cell Biol 1995 131: 111–123

    Article  CAS  PubMed  Google Scholar 

  37. O'Keefe DO et al. pH-dependent insertion of proteins into membranes: B-chain mutation of diphtheria toxin that inhibits membrane translocation, Glu-349-Lys Proc Natl Acad Sci USA 1992 89: 6202–6206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wickham TJ, Filardo EJ, Cheresh DA, Nemerow GR . Integrin alpha v beta 5 selectively promotes adenovirus mediated cell membrane permeabilization J Cell Biol 1994 127: 257–264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the following people for ongoing discussions and support: Xinhua Chen, Gene Chung, Yasuo Hamamori, John Hwang, Tatsuya Iso, Kimi Kong, Vivian Leung, Jochen Muller-Ehmsen, Alex Oxyzoglou, Coralie Poizat, Tsuyoshi Sakoda, Vittorio Sartorelli, Terry Saluna, David Tinsley and Hung-Yi Wu. Grants to LHK from the Susan G Komen Breast Cancer foundation, the Department of Defense, and the National Institutes of Health (CA59318-07) and a fellowship to LKM-K from the National Institutes of Health (HL09638-02) supported this work.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina-Kauwe, L., Maguire, M., Kasahara, N. et al. Nonviral gene delivery to human breast cancer cells by targeted Ad5 penton proteins. Gene Ther 8, 1753–1761 (2001). https://doi.org/10.1038/sj.gt.3301583

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301583

Keywords

This article is cited by

Search

Quick links