Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Enhanced suicide gene effect by adenoviral transduction of a VP22-cytosine deaminase (CD) fusion gene

Abstract

The low transduction efficiency of viral and nonviral vectors is a major limitation in tumour gene therapy. The HSV-1 tegument protein VP22 has been shown to exhibit a novel intercellular transport property. VP22 wild-type as well as VP22 fusion proteins efficiently spread from the original expressing cell to numerous neighbouring cells, so that protein transport by VP22 chimaeric polypeptides into the surrounding cells offers a possible compensation for the inadequate gene transfer efficiencies. To improve the therapeutic efficacy of the E. coli cytosine deaminase (CD) suicide gene we made use of the VP22 transport property in CD transducing adenoviral (Ad) vectors. C- and N-terminal fusions of CD linked in-frame with VP22 were generated and cloned into recombinant adenoviral vectors. Following in vitro transduction immunofluorescence analysis of Ad-transduced producer cells coplated with naive cells confirmed that the characteristic foci pattern of central producer and adjoining neighbour cells displaying nuclear staining was retained. After transduction of rat hepatoma cells with adenoviral vectors and subsequent incubation with the prodrug 5-FC, we observed enhanced cell cytotoxicity when comparing the CD-VP22 fusion (Ad-CD-VP22) with Ad-vectors expressing the CD gene only (Ad-CD). Thereby employment of Ad-vectors encoding VP22 fusion proteins opens up new possibilities to potentiate the efficiency of suicide gene therapy for the treatment of solid tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Shand N et al. A phase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir Hum Gene Ther 1999 10: 2325–2335

    Article  CAS  PubMed  Google Scholar 

  2. Klatzmann D et al. A phase I/II study of herpes simplex virus type 1 thymidine kinase ‘suicide’ gene therapy for recurrent glioblastoma Hum Gene Ther 1998 9: 2595–2604

    CAS  PubMed  Google Scholar 

  3. Ram Z et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells Nat Med 1997 3: 1354–1361

    Article  CAS  PubMed  Google Scholar 

  4. Austin EA, Huber BE . A first step in the development of gene therapy for colorectal carcinoma: cloning, sequencing, and expression of Escherichia coli cytosine deaminase Mol Pharmacol 1993 43: 380–387

    CAS  PubMed  Google Scholar 

  5. Danielsen S et al. Characterization of the Escherichia coli codBA operon encoding cytosine permease and cytosine deaminase Mol Microbiol 1992 6: 1335–1344

    Article  CAS  PubMed  Google Scholar 

  6. Topf N, Worgall S, Hackett NR, Crystal RG . Regional ‘pro-drug’ gene therapy: intravenous administration of an adenoviral vector expressing the E. coli cytosine deaminase gene and systemic administration of 5-fluorocytosine suppresses growth of hepatic metastasis of colon carcinoma Gene Therapy 1998 5: 507–513

    Article  CAS  PubMed  Google Scholar 

  7. Ge K et al. Transduction of cytosine deaminase gene makes rat glioma cells highly sensitive to 5-fluorocytosine Int J Cancer 1997 71: 675–679

    Article  CAS  PubMed  Google Scholar 

  8. Kanai F et al. In vivo gene therapy for alpha-fetoprotein-producing hepatocellular carcinoma by adenovirus-mediated transfer of cytosine deaminase gene Cancer Res 1997 57: 461–465

    CAS  PubMed  Google Scholar 

  9. Ohwada A, Hirschowitz EA, Crystal RG . Regional delivery of an adenovirus vector containing the Escherichia coli cytosine deaminase gene to provide local activation of 5-fluorocytosine to suppress the growth of colon carcinoma metastatic to liver Hum Gene Ther 1996 7: 1567–1576

    Article  CAS  PubMed  Google Scholar 

  10. Consalvo M et al. 5-Fluorocytosine-induced eradication of murine adenocarcinomas engineered to express the cytosine deaminase suicide gene requires host immune competence and leaves an efficient memory J Immunol 1995 154: 5302–5312

    CAS  PubMed  Google Scholar 

  11. Richards CA, Austin EA, Huber BE . Transcriptional regulatory sequences of carcinoembryonic antigen: identification and use with cytosine deaminase for tumor-specific gene therapy Hum Gene Ther 1995 6: 881–893

    Article  CAS  PubMed  Google Scholar 

  12. Mullen CA, Coale MM, Lowe R, Blaese RM . Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild-type tumor Cancer Res 1994 54: 1503–1506

    CAS  PubMed  Google Scholar 

  13. Huber BE et al. In vivo antitumor activity of 5-fluorocytosine on human colorectal carcinoma cells genetically modified to express cytosine deaminase Cancer Res 1993 53: 4619–4626

    CAS  PubMed  Google Scholar 

  14. Uckert W et al. Double suicide gene (cytosine deaminase and herpes simplex virus thymidine kinase) but not single gene transfer allows reliable elimination of tumor cells in vivo Hum Gene Ther 1998 9: 855–865

    Article  CAS  PubMed  Google Scholar 

  15. Dong Y et al. In vivo replication-deficient adenovirus vector-mediated transduction of the cytosine deaminase gene sensitizes glioma cells to 5-fluorocytosine Hum Gene Ther 1996 7: 713–720

    Article  CAS  PubMed  Google Scholar 

  16. Hirschowitz EA et al. In vivo adenovirus-mediated gene transfer of the Escherichia coli cytosine deaminase gene to human colon carcinoma-derived tumors induces chemosensitivity to 5-fluorocytosine Hum Gene Ther 1995 6: 1055–1063

    Article  CAS  PubMed  Google Scholar 

  17. Huber BE et al. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase Proc Natl Acad Sci USA 1994 91: 8302–8306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoganson DK, Batra RK, Olsen JC, Boucher RC . Comparison of the effects of three different toxin genes and their levels of expression on cell growth and bystander effect in lung adenocarcinoma Cancer Res 1996 56: 1315–1323

    CAS  PubMed  Google Scholar 

  19. Trinh QT et al. Enzyme/prodrug gene therapy: comparison of cytosine deaminase/5-fluorocytosine versus thymidine kinase/ganciclovir enzyme/prodrug systems in a human colorectal carcinoma cell line Cancer Res 1995 55: 4808–4812

    CAS  PubMed  Google Scholar 

  20. Kuriyama S et al. Cytosine deaminase/5-fluorocytosine gene therapy can induce efficient anti-tumor effects and protective immunity in immunocompetent mice but not in athymic nude mice Int J Cancer 1999 81: 592–597

    Article  CAS  PubMed  Google Scholar 

  21. Cool V et al. Curative potential of herpes simplex virus thymidine kinase gene transfer in rats with 9L gliosarcoma Hum Gene Ther 1996 7: 627–635

    Article  CAS  PubMed  Google Scholar 

  22. Marshall E . Gene therapy on trial Science 2000 288: 951–957

    Article  CAS  PubMed  Google Scholar 

  23. Elliott G, O'Hare P . Intercellular trafficking and protein delivery by a herpesvirus structural protein Cell 1997 88: 223–233

    Article  CAS  PubMed  Google Scholar 

  24. Elliott G, O'Hare P . Herpes simplex virus type 1 tegument protein VP22 induces the stabilization and hyperacetylation of microtubules J Virol 1998 72: 6448–6455

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wybranietz WA et al. Quantification of VP22-GFP spread by direct fluorescence in 15 commonly used cell lines J Gene Med 1999 1: 265–274

    Article  CAS  PubMed  Google Scholar 

  26. Phelan A, Elliott G, O'Hare P . Intercellular delivery of functional p53 by the herpesvirus protein VP22 Nat Biotechnol 1998 16: 440–443

    Article  CAS  PubMed  Google Scholar 

  27. Dilber MS et al. Intercellular delivery of thymidine kinase prodrug activating enzyme by the herpes simplex virus protein, VP22 Gene Therapy 1999 6: 2–21

    Article  Google Scholar 

  28. Skehan P et al. New colorimetric cytotoxicity assay for anticancer-drug screening J Natl Cancer Inst 1990 82: 1107–1112

    Article  CAS  PubMed  Google Scholar 

  29. Trubenbach J et al. Growth characteristics and imaging properties of the Morris hepatoma 3924A in ACI rats: a suitable model for transarterial chemoembolization Cardiovasc Intervent Radiol 2000 23: 211–217

    Article  CAS  PubMed  Google Scholar 

  30. Aints A, Dilber MS, Smith CI . Intercellular spread of GFP-VP22 J Gene Med 1999 1: 275–279

    Article  CAS  PubMed  Google Scholar 

  31. Brewis N et al. Evaluation of VP22 spread in tissue culture J Virol 2000 74: 1051–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Derer W et al. Direct protein transfer to terminally differentiated muscle J Mol Med 1999 77: 609–613

    Article  CAS  PubMed  Google Scholar 

  33. Cubitt AB et al. Understanding, improving and using green fluorescent proteins Trends Biochem Sci 1995 20: 448–455

    Article  CAS  PubMed  Google Scholar 

  34. Griffon G, Merlin JL, Marchal C . Comparison of sulforhodamine B, tetrazolium and clonogenic assays for in vitro radiosensitivity testing in human ovarian cell lines Anticancer Drugs 1995 6: 115–123

    Article  CAS  PubMed  Google Scholar 

  35. Perez RP, Godwin AK, Handel LM, Hamilton TC . A comparison of clonogenic, microtetrazolium and sulforhodamine B assays for determination of cisplatin cytotoxicity in human ovarian carcinoma cell lines Eur J Cancer 1993 29: 395–399

    Article  Google Scholar 

  36. Keepers YP et al. Comparison of the sulforhodamine B protein and tetrazolium (MTT) assays for in vitro chemosensitivity Eur J Cancer 1991 27: 897–900

    Article  CAS  PubMed  Google Scholar 

  37. Rubinstein LV et al. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines J Natl Cancer Inst 1990 82: 1113–1118

    Article  CAS  PubMed  Google Scholar 

  38. Diasio RB, Lakings DE, Bennett JE . Evidence for conversion of 5-fluorocytosine to 5-fluorouracil in humans: possible factor in 5-fluorocytosine clinical toxicity Antimicrob Agents Chemother 1978 14: 903–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pomeranz LE, Blaho JA . Modified VP22 localizes to the cell nucleus during synchronized herpes simplex virus type 1 infection J Virol 1999 73: 6769–6781

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Harms JS, Ren X, Oliveira SC, Splitter GA . Distinctions between bovine herpesvirus 1 and herpes simplex virus type 1 VP22 tegument protein subcellular associations J Virol 2000 74: 3301–3312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Elliott G, O'Hare P . Intercellular trafficking of VP22-GFP fusion proteins Gene Therapy 1999 6: 149–151

    Article  CAS  PubMed  Google Scholar 

  42. Elliott G, O'Hare P . Cytoplasm-to-nucleus translocation of a herpesvirus tegument protein during cell division J Virol 2000 74: 2131–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Adachi Y et al. Experimental gene therapy for brain tumors using adenovirus-mediated transfer of cytosine deaminase gene and uracil phosphoribosyltransferase gene with 5-fluorocytosine Hum Gene Ther 2000 11: 77–89

    Article  CAS  PubMed  Google Scholar 

  44. Hamstra DA et al. Enzyme/prodrug therapy for head and neck cancer using a catalytically superior cytosine deaminase Hum Gene Ther 1999 10: 1993–2003

    Article  CAS  PubMed  Google Scholar 

  45. Erbs P et al. In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion gene Cancer Res 2000 60: 3813–3822

    CAS  PubMed  Google Scholar 

  46. Ju DW et al. Adenovirus-mediated lymphotactin gene transfer improves therapeutic efficacy of cytosine deaminase suicide gene therapy in established murine colon carcinoma Gene Therapy 2000 7: 329–338

    Article  CAS  PubMed  Google Scholar 

  47. Rogulski KR et al. Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization Hum Gene Ther 2000 11: 67–76

    Article  CAS  PubMed  Google Scholar 

  48. Chartier C et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli J Virol 1996 70: 4805–4810

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chroboczek J, Bieber F, Jacrot B . The sequence of the genome of adenovirus type 5 and its comparison with the genome of adenovirus type 2 Virology 1992 186: 280–285

    Article  CAS  PubMed  Google Scholar 

  50. Rogulski KR, Kim JH, Kim SH, Freytag SO . Glioma cells transduced with an Escherichia coli CD/HSV-1 TK fusion gene exhibit enhanced metabolic suicide and radiosensitivity Hum Gene Ther 1997 8: 73–85

    Article  CAS  PubMed  Google Scholar 

  51. Mullen CA, Kilstrup M, Blaese RM . Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system Proc Natl Acad Sci USA 1992 89: 33–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wybranietz WA, Lauer U . Distinct combination of purification methods dramatically improves cohesive-end subcloning of PCR products BioTechniques 1998 24: 578–580

    Article  CAS  PubMed  Google Scholar 

  53. Harding TC et al. Switching transgene expression in the brain using an adenoviral tetracycline-regulatable system Nat Biotechnol 1998 16: 553–555

    Article  CAS  PubMed  Google Scholar 

  54. Graham FL, Prevec L . Methods for construction of adenovirus vectors Mol Biotechnol 1995 3: 207–220

    Article  CAS  PubMed  Google Scholar 

  55. Zhang WW, Koch PE, Roth JA . Detection of wild-type contamination in a recombinant adenoviral preparation by PCR BioTechniques 1995 18: 444–447

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Gülüzar Turan, Irina Smirnow and Andrea Schenk for their excellent technical assistance. The plasmids pWZLneoCD and pWZLneoCDglyTK were a kind gift from Kenneth Rogulski, Henry Ford Health System, Detroit, MI, USA. The adenoviral vector Ad-VP22-GFP was a gift from T Harding, Bristol, UK. We thank Transgene SA, Strasbourg, France, for kindly providing us with vectors pTG6600, pTG8347, pTG3602 and the bacteria E. coli BJ5183. This work was supported in part by grants from the Federal Ministry of Education, Science, Research and Technology (Fö. 01KS9602, Fö. 01KV9532), from the Interdisciplinary Clinical Research Center (IZKF) Tübingen, and from the fortüne-program of the Medical Faculty of the Eberhard-Karls-University Tübingen (F.1281127). WAW was supported by a scholarship from the Pinguin Foundation (Henkel KGaA).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wybranietz, W., Groß, C., Phelan, A. et al. Enhanced suicide gene effect by adenoviral transduction of a VP22-cytosine deaminase (CD) fusion gene. Gene Ther 8, 1654–1664 (2001). https://doi.org/10.1038/sj.gt.3301564

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301564

Keywords

This article is cited by

Search

Quick links