Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Adenovirus-mediated transfer of p53 and p16INK4a results in pancreatic cancer regression in vitro and in vivo

Abstract

Pancreatic cancer has a very poor prognosis. Current chemotherapy and radiotherapy regimens are only moderately successful. The tumour suppressor genes p53 and p16INK4aencode cell cycle regulatory proteins that are important candidates for gene replacement therapy. Over 80% of pancreatic adenocarcinoma cases lack detectable p16 protein while over 60% contain mutated p53 protein. We used replication-deficient recombinant adenoviruses to reintroduce wild-type p16 and p53 into pancreatic cancer cells in vitro and into subcutaneous pancreatic tumours in an animal model to determine the effect on tumour growth. Significant growth inhibition was observed in all five human pancreatic cell lines with these viruses (P < 0.002) compared with similar control viruses expressing either luciferase or β-galactosidase. G1 arrest was observed in all cell lines 72 h after infection with Adp16. Infection with Adp53 caused significant levels of apoptosis (P < 0.004). Apoptosis was also observed to a lesser degree (P < 0.03) with the Adp16 vector. Subcutaneous pancreatic tumours, generated in nu-nu mice demonstrated significant growth suppression following injection of Adp53, Adp16 and a combination of both Adp53 and Adp16 (P < 0.0001). These results show that transfer of wild-type p53 and p16 produces significant growth suppression of pancreatic cancer in vitro and in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bramhall SR et al. Incidence treatment and survival in 13,560 patients with pancreatic cancer: an epidemiological study in the West Midlands Br J Surg 1995 82: 111–115

    Article  CAS  PubMed  Google Scholar 

  2. HMSO Great Britain Office of Population Censuses and Surveys. Cancer Statistics London 1998

  3. Boring CC, Squires TS, Tong T, Montgomery S . Cancer statistics CA Cancer J Clin 1994 44: 7–26

    Article  CAS  PubMed  Google Scholar 

  4. Neoptolemos JP et al. Progress report: a randomised multicentre European study comparing adjuvant radiotherapy, six months chemotherapy and combination therapy versus no adjuvant treatment in resectable pancreatic cancer Int J Pancreatol 1997 21: 97–104

    CAS  PubMed  Google Scholar 

  5. Caldas C et al. Frequent somatic mutations and homozygous deletions of the MTS1 gene in pancreatic adenocarcinoma Nat Genet 1994 8: 27–32

    Article  CAS  PubMed  Google Scholar 

  6. Naumann M et al. Frequent codeletion of p16/MTS1 and p15/MTS2 and genetic alterations in p16/MTS1 in pancreatic tumours Gastroenterology 1996 110: 1215–1224

    Article  CAS  PubMed  Google Scholar 

  7. Barton CM et al. Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer Br J Cancer 1991 64: 1076–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang SY et al. Immunohistochemical analysis of p53 expression in human pancreatic carcinomas Arch Pathol Lab Med 1994 118: 150–154

    CAS  PubMed  Google Scholar 

  9. Lakin ND, Jackson SP . Regulation of p53 in response to DNA damage Oncogene 1999 18: 7644–7655

    Article  CAS  PubMed  Google Scholar 

  10. Kastan MB et al. Participation of the p53 protein in the cellular response to DNA damage Cancer Res 1991 51: 6301–6311

    Google Scholar 

  11. Hollstein et al. The p53 tumour suppressor gene Nature 1991 351: 453–456

    Article  Google Scholar 

  12. Serrano M, Hannon GJ, Beach D . A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/cdk4 Nature 1993 366: 704–707

    Article  CAS  PubMed  Google Scholar 

  13. Medema R, Herrera R, Lam F, Weinberg R . Growth suppression by p16INK4 requires functional retinoblastoma protein Proc Natl Acad Sci USA 1995 92: 6289–6293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Serrano M et al. Role of the INK4a locus in tumor suppression and cell mortality Cell 1996 85: 27–37

    Article  CAS  PubMed  Google Scholar 

  15. Rocco JW et al. p16INK4 adenovirus mediated gene therapy for human head and neck squamous cancer Clin Cancer Res 1998 4: 1697–1704

    CAS  PubMed  Google Scholar 

  16. Kobayashi S et al. p16INK4a expression adenovirus vector to suppress pancreas cancer cell proliferation Clin Cancer Res 1999 5: 4182–4185

    CAS  PubMed  Google Scholar 

  17. Roth JA et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer Nature Med 1996 2: 985–991

    Article  CAS  PubMed  Google Scholar 

  18. Clayman GL et al. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma J Clin Oncol 1998 16: 2221–2232

    Article  CAS  PubMed  Google Scholar 

  19. Schrump DS et al. Inhibition of esophageal cancer proliferation by adenovirally mediated delivery of p16INK4 Cancer Gene Ther 1996 3: 357–364

    CAS  PubMed  Google Scholar 

  20. Humphreys M, Greenhalf W, Neoptolemos JP, Ghaneh P . The potential for gene therapy in pancreatic cancer Int J Pancreatol 1999 26: 5–21

    Article  CAS  PubMed  Google Scholar 

  21. Bouvet M et al. Adenovirus-mediated wild-type p53 tumor suppressor gene therapy induces apoptosis and suppresses growth of human pancreatic cancer Ann Surg Oncol 1998 5: 681–688

    Article  CAS  PubMed  Google Scholar 

  22. Barton CM et al. Abnormalities of the rb1 and dcc tumor-suppressor genes – uncommon in human pancreatic adenocarcinoma Mol Carcinogen 1995 13: 61–69

    Article  CAS  Google Scholar 

  23. Steiner MS et al. p16/MTS1/INK4A suppresses prostate cancer by both pRb dependent and independent pathways Oncogene 2000 19: 1297–1306

    Article  CAS  PubMed  Google Scholar 

  24. Lukas J et al. p16INK4a, but not constitutively active pRb, can impose a sustained G1 arrest: molecular mechanisms and implications for oncogenesis Oncogene 1999 18: 3930–3935

    Article  CAS  PubMed  Google Scholar 

  25. Pearson A et al. Factors limiting adenovirus-mediated transfer into human lung and pancreatic cancer cell lines Clin Cancer Res 1999 5: 4208–4213

    CAS  PubMed  Google Scholar 

  26. Gomez-Manzano C et al. Adenovirus mediated transfer of p53 produces rapid and generalised death of human glioma cells via apoptosis Cancer Res 1996 56: 694–699

    CAS  PubMed  Google Scholar 

  27. Cascallo M et al. Genetic background determines the response to adenovirus-mediated wild-type p53 expression in pancreatic tumor cells Cancer Gene Ther 1999 6: 428–436

    Article  CAS  PubMed  Google Scholar 

  28. Wolf JK et al. Adenovirus-mediated growth inhibition of ovarian cancer cells is independent of endogenous p53 status Gyn Oncol 1999 75: 261–266

    Article  CAS  Google Scholar 

  29. Naruse I et al. High concentrations of recombinant adenovirus expressing p16 gene induces apoptosis in lung cancer cell lines Anticancer Res 1998 18: 4275–4282

    CAS  PubMed  Google Scholar 

  30. Schreiber M, Muller WJ, Singh G, Graham FL . Comparison of the effectiveness of adenovirus vectors expressing cyclin kinase p16INK4a, p18INK4c, p19INK4d, p21WAF1/CIP1 and p27KIP1 in inducing cell cycle arrest, apoptosis and inhibition of tumourigenicity Oncogene 1999 18: 1663–1676

    Article  CAS  PubMed  Google Scholar 

  31. Yamasaki L et al. Tumor induction and tissue atrophy in mice lacking E2F-1 Cell 1996 85: 537–548

    Article  CAS  PubMed  Google Scholar 

  32. Fueyo J et al. Over expression of E2F-1 in glioma triggers apoptosis and suppresses tumour growth in vitro and in vivo Nature Med 1998 4: 685–690

    Article  CAS  PubMed  Google Scholar 

  33. Sandig V et al. Adenovirally transferred p16(INK4/CDKN2) and p53 genes cooperate to induce apoptotic tumor cell death Nature Med 1997 3: 313–319

    Article  CAS  PubMed  Google Scholar 

  34. Bramson JL et al. Direct intratumoral injection of an adenovirus expressing interleukin-12 induces regression and long-lasting immunity that is associated with highly localized expression of interleukin-12 Hum Gene Ther 1996 7: 1995–2002

    Article  CAS  PubMed  Google Scholar 

  35. Fisher KJ et al. Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis Virology 1996 217: 11–22

    Article  CAS  PubMed  Google Scholar 

  36. Bramson JL, Hitt M, Gauldie J, Graham FL . Pre-existing immunity to adenovirus does not prevent tumor regression following intratumoral administration of a vector expressing IL-12 but inhibits virus dissemination Gene Therapy 1997 4: 1069–1076

    Article  CAS  PubMed  Google Scholar 

  37. Gerard R, Meidell RS . Adenovirus vectors. In: Glover DM, Hames BD (eds) DNA Cloning 4. A Practical Approach Oxford University Press: Oxford 1996 pp 285–306

    Google Scholar 

  38. Mittereder N, March KL, Trapnell BC . Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy J Virol 1996 70: 7498–7509

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Cathy Till in the Department of Haematology, University of Liverpool for the FACS analysis and Sandra Peak and Dale Worthing for the in vivo experiments. This work was funded by the Vandervell Fellowship Award from the Royal College of Surgeons of England and the Imperial Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghaneh, P., Greenhalf, W., Humphreys, M. et al. Adenovirus-mediated transfer of p53 and p16INK4a results in pancreatic cancer regression in vitro and in vivo. Gene Ther 8, 199–208 (2001). https://doi.org/10.1038/sj.gt.3301394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301394

Keywords

This article is cited by

Search

Quick links