Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Influence of adenoviral fiber mutations on viral encapsidation, infectivity and in vivo tropism

Abstract

Targeting of adenovirus (Ad)-encoded therapeutic genes to specific cell types has become a major goal in gene therapy. Redirecting the specificity of infection requires the abrogation of the natural interaction between the viral fiber and its cellular receptors (CAR) and the simultaneous introduction of a new binding specificity into the viral capsid. To abrogate the natural affinity of the fiber, we have mutated residues presumed to be directly or indirectly involved in CAR-binding in the knob domain of the fiber protein. These residues are located in the AB loop (Ser408) and in the DG loop (Tyr491, Ala494, Ala503). The mutations Ser408Glu, Tyr491Asp, Ala494Asp and Ala503Asp did not prevent the incorporation of trimeric fibers in the viral capsid but led to loss of CAR binding in vitro. Infectivity of the mutant viruses could be restored in vitro by introducing a ligand at the C-terminal end of the knob, confirming that the reduced infectivity of the fiber-modified virus was due to an impaired interaction of the viral particle with the CAR receptor. However, after systemic delivery, the in vivo biodistribution of impaired CAR-binding viruses without addition of a specific ligand was not altered when compared with wild-type Ad.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bramson J, Graham F, Gauldie J . The use of adenoviral vector for gene therapy and gene transfer in vivo Curr Opin Biotech 1995 6: 590–595

    Article  CAS  PubMed  Google Scholar 

  2. Crystal R . Transfer of genes to humans: early lessons and obstacles to success Science 1995 270: 404–410

    Article  CAS  PubMed  Google Scholar 

  3. Goodman J et al. Adenoviral-mediated thymidine kinase gene transfer into the primate brain followed by systemic ganciclovir: pathologic, radiologic and molecular studies Hum Gene Ther 1996 7: 1241–1250

    Article  CAS  PubMed  Google Scholar 

  4. Yee D et al. Adenovirus-mediated transfer of herpes simplex virus thymidine kinase in an ascites model of human breast cancer Hum Gene Ther 1996 7: 1251–1257

    Article  CAS  PubMed  Google Scholar 

  5. Bui L et al. In vivo therapy of hepatocellular carcinoma with a tumor-specific adenoviral vector expressing interleukin-2 Hum Gene Ther 1997 8: 2173–2182

    Article  CAS  PubMed  Google Scholar 

  6. Bergelson J et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5 Science 1997 275: 1320–1323

    Article  CAS  PubMed  Google Scholar 

  7. Tomko R, Xu R, Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses Proc Natl Acad Sci USA 1997 94: 3352–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hong S et al. Adenovirus type 5 fiber knob binds to MHC class I α2 domain at the surface of human epithelial and B lymphoblastoid cells EMBO J 1997 16: 2294–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davison E, Kirby T, Elliot T, Santis G . The human HLA-A0201 allele, when expressed in hamster cells, is not a high-affinity receptor for adenovirus type 5 fiber J Virol 1999 73: 4513–4517

    CAS  PubMed  PubMed Central  Google Scholar 

  10. McDonald D et al. Coxsackie and adenovirus receptor (CAR)-dependent and major histocompatibility complex (MHC) class I-independent uptake of recombinant denoviruses into human tumour cells Gene Therapy 1999 6: 1512–1519

    Article  CAS  PubMed  Google Scholar 

  11. Mathias P, Wickham T, Moore M, Nemerow G . Multiple adenovirus serotypes use αv integrins for infection J Virol 1994 68: 6811–6814

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wickham T, Mathias P, Cheresch D, Nemerow G . Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment Cell 1993 73: 309–319

    Article  CAS  PubMed  Google Scholar 

  13. Henry L et al. Characterization of the knob domain of the adenovirus type 5 fiber protein expressed in E. coli J Virol 1994 68: 5239–5246

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Louis N et al. Cell binding domain of adenovirus serotype 2 fiber J Virol 1994 68: 4104–4106

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Xia D, Henry L, Gerard R, Deisenhofer J . Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7A resolution Structure 1994 2: 1259–1270

    Article  CAS  PubMed  Google Scholar 

  16. van Raaij M, Mitraki A, Lavigne G, Cusack S . A triple β-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein Nature 1999 401: 935–938

    Article  CAS  PubMed  Google Scholar 

  17. van Raaij M, Louis N, Chroboczek J, Cusack S . Structure of the human adenovirus serotype 2 fiber head domain at 1.5A resolution Virology 1999 262: 333–343

    Article  CAS  PubMed  Google Scholar 

  18. Roelvink P et al. Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae Science 1999 286: 1568–1571

    Article  CAS  PubMed  Google Scholar 

  19. Bewley M et al. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR Science 1999 286: 1579–1583

    Article  CAS  PubMed  Google Scholar 

  20. Kirby I et al. Mutations in the DG loop of adenovirus type 5 fiber knob protein abolish high-affinity binding to its cellular receptor CAR J Virol 1999 73: 9508–9514

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kirby I et al. Identification of contact residues and definition of the CAR-binding site of adenovirus type 5 fiber protein J Virol 2000 74: 2804–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Santis G et al. Molecular determinants of adenovirus serotype 5 fibre binding to its cellular receptor CAR J Gen Virol 1999 80: 1519–1527

    Article  CAS  PubMed  Google Scholar 

  23. Defer C, Belin M, Caillet-Boudin M, Boulanger P . Human adenovirus-host cell interactions: comparative study with members of subgroups B and C J Virol 1990 64: 3661–3673

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Stevenson S et al. Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the fiber head domain J Virol 1995 69: 2850–2857

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chartier C et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli J Virol 1996 70: 4805–4810

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Legrand V et al. Fiberless recombinant adenoviruses: virus maturation and infectivity in the absence of fiber J Virol 1999 73: 907–919

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wickham T, Roelvink P, Brough D, Kovesdi I . Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types Nat Biotech 1996 14: 1570–1573

    Article  CAS  Google Scholar 

  28. Wickham T et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins J Virol 1997 71: 8221–8229

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoshida Y et al. Generation of fiber-mutant recombinant adenoviruses for gene therapy of malignant glioma Hum Gene Ther 1998 9: 2503–2515

    Article  CAS  PubMed  Google Scholar 

  30. Bouri K et al. Polylysine modification of adenoviral fiber protein enhances muscle cell transduction Hum Gene Ther 1999 10: 1633–1640

    Article  CAS  PubMed  Google Scholar 

  31. Dechecchi M, Tamanini A, Bonizzato A, Cabrini G . Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cells interactions Virology 2000 268: 382–390

    Article  CAS  PubMed  Google Scholar 

  32. Wood M et al. Biodistribution of an adenoviral vector carrying the luciferase reporter gene following intravesical or intravenous administration to a mouse Cancer Gene Ther 1999 6: 367–372

    CAS  PubMed  Google Scholar 

  33. Fechner H et al. Expression of Coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers Gene Therapy 1999 6: 1520–1535

    Article  CAS  PubMed  Google Scholar 

  34. Kass-Eisler A et al. The impact of developmental stage, route of administration and the immune system on adenovirus-mediated gene transfer Gene Therapy 1994 1: 395–402

    CAS  PubMed  Google Scholar 

  35. Huard J et al. The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants Gene Therapy 1995 2: 107–115

    CAS  PubMed  Google Scholar 

  36. Herz J, Gerard R . Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice Proc Natl Acad Sci USA 1993 90: 2812–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miyazawa N et al. Fiber swap between adenovirus subgroups B and C alters intracellular trafficking of adenovirus gene transfer vectors J Virol 1999 73: 6056–6065

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wickham T . Targeting adenovirus Gene Therapy 2000 7: 110–114

    Article  CAS  PubMed  Google Scholar 

  39. Gu D et al. Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice Cancer Res 1999 59: 2608–2614

    CAS  PubMed  Google Scholar 

  40. Printz M et al. Fibroblast growth factor 2-retargeted adenoviral vectors exhibit a modified biolocalization pattern and display reduced toxicity relative to native adenoviral vectors Hum Gene Ther 2000 11: 191–204

    Article  CAS  PubMed  Google Scholar 

  41. Zinn K et al. Imaging and tissue biodistribution of 99mTc-labeled adenovirus knob (serotype 5) Gene Therapy 1998 5: 798–808

    Article  CAS  PubMed  Google Scholar 

  42. Ye X, Jerebtsova M, Ray P . Liver bypass significantly increase the transduction efficiency of recombinant adenoviral vectors in the lung, intestine and kidney Hum Gene Ther 2000 11: 621–627

    Article  CAS  PubMed  Google Scholar 

  43. Sambrook J, Fritsch E, Maniatis T . Molecular Cloning: a Laboratory Manual, 2nd edn Cold Spring Harbor Laboratory: Cold Spring Harbor, NY 1989

    Google Scholar 

  44. Lusky M et al. Regulation of adenovirus-mediated transgene expression by the viral E4 gene products: requirement for E4 ORF3 J Virol 1999 73: 8308–8319

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sanes J, Rubenstein J, Nicolas J . Use of a retrovirus to study post-implantation cell lineage in mouse embryos EMBO J 1986 5: 3133–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gluzman Y, van Doren K . Palindromic adenovirus type 5-simian virus 40 hybrid J Virol 1983 45: 91–103

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wray W, Boulikas T, Wray V, Hancock R . Silver staining of proteins in polyacrylamide gels Anal Biochem 1981 118: 197–203

    Article  CAS  PubMed  Google Scholar 

  48. Becker K, Pan D, Whitley C . Real-time quantitative polymerase chain reaction to assess gene transfer Hum Gene Ther 1999 10: 2559–2566

    Article  CAS  PubMed  Google Scholar 

  49. Overbergh L, Valckx D, Waer M, Mathieu C . Quantification of murine cytokine mRNAs using real time quantitative reverse transcriptase PCR Cytokine 1999 11: 305–312

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs M Lusky, AJ Winter, R Rooke and M Courtney for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leissner, P., Legrand, V., Schlesinger, Y. et al. Influence of adenoviral fiber mutations on viral encapsidation, infectivity and in vivo tropism. Gene Ther 8, 49–57 (2001). https://doi.org/10.1038/sj.gt.3301343

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301343

Keywords

This article is cited by

Search

Quick links