Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Acquired Diseases
  • Published:

Persistent, antigen-specific, therapeutic antitumor immunity by dendritic cells genetically modified with an adenoviral vector to express a model tumor antigen

Abstract

Dendritic cells (dc) are potent antigen-presenting cells that play a critical role in the initiation of cellular immune responses. Using a BALB/c syngeneic colon carcinoma cell line expressing a model tumor antigen β-galactosidase (βgal), we previously reported (Song et al, J Exp Med 1997; 186: 1247–1256) that immunization of mice with a single injection of DCs genetically modified with an adenovirus vector expressing βgal confers potent protection against a lethal intravenous tumor challenge, as well as suppression of pre-established lung tumors, resulting in a significant survival advantage. In the present study, we have addressed the question: how long does the memory of tumor antigen-specific immunity persists after DC priming in vivo using this genetically modified DC-based cancer vaccination strategy? To accomplish this, two groups of mice were evaluated: (1) mice surviving >400 days following protection from an initial intravenous tumor challenge after immunization with DC genetically modified to express βgal; and (2) mice surviving >300 days that had previously demonstrated regression of pre-established lung tumors after treatment with DC immunization. By analyzing the antigen-specific cytotoxic T lymphocyte response and challenging these long-term survival mice with a second subcutaneous tumor administration, the data demonstrate that a single administration of DC genetically modified to express a model antigen induces long-lasting, antigen-specific antitumor immunity in both naive and tumor-bearing hosts, observations that have important implications in the development of genetically modified DC-based antitumor vaccination strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Pardoll DM . Cancer vaccines Immunol Today 1993 14: 310–316

    Article  CAS  PubMed  Google Scholar 

  2. Houghton AN . Cancer antigens: immune recognition of self and altered self J Exp Med 1994 180: 1–4

    Article  CAS  PubMed  Google Scholar 

  3. Boon T, van der Bruggen P . Human tumor antigens recognized by T lymphocytes J Exp Med 1996 183: 725–729

    Article  CAS  PubMed  Google Scholar 

  4. Steinman RM . The dendritic cell system and its role in immunogenicity Annu Rev Immunol 1991 9: 271–296

    Article  CAS  PubMed  Google Scholar 

  5. Grabbe S, Beissert S, Schwarz T, Granstein RD . Dendritic cells as initiators of tumor immune responses: a possible strategy for tumor immunotherapy? Immunol Today 1995 16: 117–121

    Article  CAS  PubMed  Google Scholar 

  6. Young JW, Inaba K . Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity J Exp Med 1996 183: 7–11

    Article  CAS  PubMed  Google Scholar 

  7. Schuler G, Steinman RM . Dendritic cells as adjuvants for immune-mediated resistance to tumors J Exp Med 1997 186: 1183–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  PubMed  Google Scholar 

  9. Crystal RG . Transfer of genes to humans: early lessons and obstacles to success Science 1995 270: 404–410

    Article  CAS  PubMed  Google Scholar 

  10. Verma IM, Somia N . Gene therapy – promises, problems and prospects Nature 1997 389: 239–242

    Article  CAS  PubMed  Google Scholar 

  11. Mayordomo JI et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity Nature Med 1995 1: 1297–1302

    Article  CAS  PubMed  Google Scholar 

  12. Boczkowski D, Nair SK, Snyder D, Gilboa E . Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo J Exp Med 1996 184: 465–472

    Article  CAS  PubMed  Google Scholar 

  13. Celluzzi CM et al. Peptide-pulsed dendritic cells induce antigen-specific, CTL-mediated protective tumor immunity J Exp Med 1996 183: 283–287

    Article  CAS  PubMed  Google Scholar 

  14. Hsu FJ et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells Nature Med 1996 2: 52–58

    Article  CAS  PubMed  Google Scholar 

  15. Porgador A, Snyder D, Gilboa E . Induction of antitumor immunity using bone marrow-generated dendritic cells J Immunol 1996 156: 2918–2926

    CAS  PubMed  Google Scholar 

  16. Zitvogel L et al. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines J Exp Med 1996 183: 87–97

    Article  CAS  PubMed  Google Scholar 

  17. Nestle FO et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells Nature Med 1998 4: 328–332

    Article  CAS  PubMed  Google Scholar 

  18. Henderson RA et al. Human dendritic cells genetically engineered to express high levels of the human epithelial tumor antigen mucin (MUC-1) Cancer Res 1996 56: 3763–3770

    CAS  PubMed  Google Scholar 

  19. Reeves ME et al. Retroviral transduction of human dendritic cells with a tumor-associated antigen gene Cancer Res 1996 56: 5672–5677

    CAS  PubMed  Google Scholar 

  20. Song W et al. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity J Exp Med 1997 186: 1247–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brossart P et al. Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL J Immunol 1997 158: 3270–3276

    CAS  PubMed  Google Scholar 

  22. Ribas A et al. Genetic immunization for the melanoma antigen MART-1/Melan-A using recombinant adenovirus-transduced murine dendritic cells Cancer Res 1997 57: 2865–2869

    CAS  PubMed  Google Scholar 

  23. Specht JM et al. Dendritic cells retrovirally transduced with a model antigen gene are therapeutically effective against established pulmonary metastases J Exp Med 1997 186: 1213–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wan Y et al. Dendritic cells transduced with an adenoviral vector encoding a model tumor-associated antigen for tumor vaccination Hum Gene Ther 1997 8: 1355–1363

    Article  CAS  PubMed  Google Scholar 

  25. Albert ML, Sauter B, Bhardwaj N . Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTL Nature 1998 392: 86–89

    Article  CAS  PubMed  Google Scholar 

  26. Celluzzi CM, Falo LD Jr . Physical interaction between dendritic cells and tumor cells results in an immunogen that induces protective and therapeutic tumor rejection J Immunol 1998 160: 3081–3085

    CAS  PubMed  Google Scholar 

  27. Uyttenhove C, Maryanski J, Boon T . Escape of mouse mastocytoma P815 after nearly complete rejection is due to antigen-loss variants rather than immunosuppression J Exp Med 1983 157: 1040–1052

    Article  CAS  PubMed  Google Scholar 

  28. Lurquin C et al. Structure of the gene of tum transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells Cell 1989 58: 293–303

    Article  CAS  PubMed  Google Scholar 

  29. Lehmann F et al. Differences in the antigens recognized by cytolytic T cells on two successive metastases of a melanoma patient are consistent with immune selection Eur J Immunol 1995 25: 340–347

    Article  CAS  PubMed  Google Scholar 

  30. Maeurer MJ et al. Tumor escape from immune recognition. Lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen J Clin Invest 1996 98: 1633–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bevan MJ . Antigen presentation to cytotoxic T lymphocytes in vivo J Exp Med 1995 182: 639–641

    Article  CAS  PubMed  Google Scholar 

  32. Germain RN . MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation Cell 1994 76: 287–299

    Article  CAS  PubMed  Google Scholar 

  33. Huang AY et al. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens Science 1994 264: 961–965

    Article  CAS  PubMed  Google Scholar 

  34. Wang M et al. Active immunotherapy of cancer with a nonreplicating recombinant fowlpox virus encoding a model tumor-associated antigen J Immunol 1995 154: 4685–4692

    CAS  PubMed  Google Scholar 

  35. Rawle FC et al. Specificity of the mouse cytotoxic T lymphocyte response to adenovirus 5. E1a is immunodominant in H-2b, but not in H-2d or H-2k mice J Immunol 1991 146: 3977–3984

    CAS  PubMed  Google Scholar 

  36. Inaba K et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor J Exp Med 1992 176: 1693–1702

    Article  CAS  PubMed  Google Scholar 

  37. Rosenfeld MA et al. Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo Science 1991 252: 431–434

    Article  CAS  PubMed  Google Scholar 

  38. Rosenfeld MA et al. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium Cell 1992 68: 143–155

    Article  CAS  PubMed  Google Scholar 

  39. Hersh J, Crystal RG, Bewig B . Modulation of gene expression after replication-deficient, recombinant adenovirus-mediated gene transfer by the product of a second adenovirus vector Gene Therapy 1995 2: 124–131

    CAS  PubMed  Google Scholar 

  40. Crystal RG et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis Nat Genet 1994 8: 42–51

    Article  CAS  PubMed  Google Scholar 

  41. Gavin MA et al. Alkali hydrolysis of recombinant proteins allows for the rapid identification of class I MHC-restricted CTL epitopes J Immunol 1993 151: 3971–3980

    CAS  PubMed  Google Scholar 

  42. Mack CA et al. Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype Hum Gene Ther 1997 8: 99–109

    Article  CAS  PubMed  Google Scholar 

  43. Song W, Kong H-L, Traktman P, Crystal RG . Cytotoxic T lymphocyte responses to proteins encoded by heterologous transgenes transferred in vivo by adenoviral vectors Hum Gene Ther 1997 8: 823–833

    Google Scholar 

  44. Kong HL et al. Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular domain of the flt-1 vascular endothelial growth factor receptor Hum Gene Ther 1998 9: 823–833

    Article  CAS  PubMed  Google Scholar 

  45. Peto R et al. Design and analysis of randomized clinical trials requiring prolonged observation of each patient. II. Analysis and examples Br J Cancer 1977 35: 1–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N Mohamed in helping to prepare this manuscript. These studies were supported, in part, by the National Cancer Institute R01 CA75192; Will Rogers Memorial Fund, Los Angeles, CA; and GenVec, Inc., Rockville, MD.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, W., Tong, Y., Carpenter, H. et al. Persistent, antigen-specific, therapeutic antitumor immunity by dendritic cells genetically modified with an adenoviral vector to express a model tumor antigen. Gene Ther 7, 2080–2086 (2000). https://doi.org/10.1038/sj.gt.3301336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301336

Keywords

This article is cited by

Search

Quick links