Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

New tools for the generation of E1- and/or E3-substituted adenoviral vectors

Abstract

We have designed new vectors for the construction of recombinant adenoviruses containing expression cassettes in the E1 and/or E3 regions. Using a versatile set of restriction enzymes, the cassettes are cloned into small bacterial vectors and subsequently introduced into large plasmids containing the adenoviral sequences. Two positive selection markers facilitate the recovery of a cosmid containing a copy of the sequence of the recombinant adenovirus. The resulting cosmid is transfected into 293 or 911 cells in order to rescue the virus. Importantly, the method does not require any recombination event, either in E. coli or in mammalian cells. The entire procedure can generate viral plaques in 12 days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Robbins PD, Tahara H, Ghivizzani SC . Viral vectors for gene therapy Trends Biotechnol 1998 16: 35–40

    Article  CAS  PubMed  Google Scholar 

  2. Kochanek S et al. A new adenoviral vector: replacement of all viral coding sequences with 28kb of DNA independently expressing both full-length dystrophin and β-galactosidase Proc Natl Acad Sci USA 1996 93: 5731–5736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hardy S et al. Construction of adenovirus vectors throughcre-lox recombination J Virol 1997 71: 1842–1849

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kozarsky KF, Wilson JM . Gene therapy: adenovirus vectors Curr Opin Genet Dev 1993 3: 499–503

    Article  CAS  PubMed  Google Scholar 

  5. McGrory WJ, Bautista DS, Graham FL . A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5 Virology 1988 163: 614–617

    Article  CAS  PubMed  Google Scholar 

  6. Imler JL et al. An efficient procedure to select and recover recombinant adenovirus vectors Gene Therapy 1995 2: 263–268

    CAS  PubMed  Google Scholar 

  7. Schaack J, Langer S, Guo X . Efficient selection of recombinant adenoviruses by vectors that express β-galactosidase J Virol 1995 69: 3920–3923

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Davis AR, Meyers K, Wilson JM . High throughput method for creating and screening recombinant adenoviruses Gene Therapy 1998 5: 1148–1152

    Article  CAS  PubMed  Google Scholar 

  9. Miyake S et al. Efficient generation of recombinant adenoviruses using adenovirus DNA–terminal protein complex and a cosmid bearing the full-length virus genome Proc Natl Acad Sci USA 1996 93: 1320–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ketner G et al. Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone Proc Natl Acad Sci USA 1994 91: 6186–6190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chartier C et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli J Virol 1996 70: 4805–4810

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fu S, Deisseroth A . Use of cosmid adenoviral vector cloning system for the in vitro construction of recombinant adenoviral vectors Hum Gene Ther 1997 8: 1321–1330

    Article  CAS  PubMed  Google Scholar 

  13. Crouzet J et al. Recombinational construction in Escherichia coli of infectious adenoviral genomes Proc Natl Acad Sci USA 1997 94: 1414–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He TC et al. A simplified system for generating recombinant adenoviruses Proc Natl Acad Sci USA 1998 95: 2509–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mizuguchi H, Kay MA . Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method Hum Gene Ther 1999 9: 2577–2583

    Article  Google Scholar 

  16. Souza DW, Armentano D . Novel cloning method for recombinant adenovirus construction in Escherichia coli Biotechniques 1999 26: 502–508

    Article  CAS  PubMed  Google Scholar 

  17. Graham FL, Smiley J, Russel WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5 J Gen Virol 1977 36: 59–74

    Article  CAS  PubMed  Google Scholar 

  18. Catalano CE, Cue D, Feiss M . Virus DNA packaging: the strategy used by phage lambda Mol Microbiol 1995 16: 1075–1086

    Article  CAS  PubMed  Google Scholar 

  19. Fallaux FJ et al. Characterization of 911, a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors Hum Gene Ther 1996 7: 215–222

    Article  CAS  PubMed  Google Scholar 

  20. Miwa T, Matsubara K . Lambda phage DNA sequences affecting the packaging process Gene 1983 24: 199–206

    Article  CAS  PubMed  Google Scholar 

  21. Bett AJ, Haddara W, Prevec L, Graham FL . An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3 Proc Natl Acad Sci USA 1994 91: 8802–8806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tomanin R et al. Development and characterization of a binary gene expression system based on bacteriophage T7 components in adenovirus vectors Gene 1997 193: 129–140

    Article  CAS  PubMed  Google Scholar 

  23. Pützer BM et al. Interleukin 12 and B7–1 costimulatory molecule expressed by an adenovirus vector act synergistically to facilitate tumor regression Proc Natl Acad Sci USA 1997 94: 10889–10894

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bramson J et al. Construction of a double recombinant adenovirus vector expressing a heterodimeric cytokine: in vitro and in vivo production of biologically active interleukin-12 Hum Gene Ther 1996 7: 333–342

    Article  CAS  PubMed  Google Scholar 

  25. Oka A, Sugisaki H, Takanami M . Nucleotide sequence of the kanamycin resistance transposon Tn903 J Mol Biol 1981 147: 217–226

    Article  CAS  PubMed  Google Scholar 

  26. Birnboim HC, Doly J . A rapid alkaline extraction procedure for screening recombinant plasmid DNA Nucleic Acids Res 1979 7: 1513–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gerard RD, Meidell RS . Adenovirus vectors. In: Hames BD, Gover D (eds) DNA Cloning: A Practical Approach Oxford University Press: Oxford 1995 pp 285–306

    Google Scholar 

  28. Cepko C . X-gal staining of cultured cells. In: Ausubel FM et al (eds). Current Protocols in Molecular Biology John Wiley: New York 1987 (Suppl.17): pp9.11.9–9.11.12

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Drs E Chang, Y Laroche and D Salmi for critical review of the manuscript, and Dr RE Vestal for generous financial help.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danthinne, X., Werth, E. New tools for the generation of E1- and/or E3-substituted adenoviral vectors. Gene Ther 7, 80–87 (2000). https://doi.org/10.1038/sj.gt.3301047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301047

Keywords

This article is cited by

Search

Quick links