Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

A model for long-term transgene expression in spinal cord regeneration studies

Abstract

In order to determine the suitability of first generation adenoviral vectors for gene delivery into spinal cord white matter, four different titres of β-galactosidase-expressing adenovirus were injected into spinal cord white matter of adult rats. At titres 106 p.f.u., transgene expression was extensive but severe tissue damage was observed in the form of axon degeneration, demyelination and astrocyte loss. When 105 p.f.u. were injected, only low levels of axon degeneration and demyelination were observed. β-Galactosidase activity was detectable at 72 days and did not diminish significantly with time. The immune response in the spinal cord to 105 p.f.u. over 72 days was minimal, and indistinguishable from that to injection of buffer. A prominent immune response was observed when 107 p.f.u. was injected into the spinal cord of PVG rats, and when 105 or 107 p.f.u. was injected into AO rats. These results indicate that the immune response in PVG rats to βgal-expressing adenovirus is both strain and titre dependent. First generation adenoviral vectors, therefore, induce moderate and long-lived transgene expression with minimal tissue damage and immune response when an appropriate titre is injected into the low responder PVG rat strain, providing a suitable model for assessing the effect of gene delivery in models of spinal cord injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Le Gal La Salle GL et al. An adenovirus vector for gene-transfer into neurons and glia in the brain Science 1993 259: 988–990

    Article  CAS  PubMed  Google Scholar 

  2. Davidson BL et al. A model system for in vivo gene transfer into the central nervous system using an adenoviral vector Nat Genet 1993 3: 219–223

    Article  CAS  PubMed  Google Scholar 

  3. Ridoux V et al. The use of adenovirus vectors for intracerebral grafting of transfected nervous cells Neuroreport 1994 5: 801–804

    Article  CAS  PubMed  Google Scholar 

  4. Byrnes AP, Rusby JE, Wood MJA, Charlton HM . Adenovirus gene transfer causes inflammation in the brain Neuroscience 1995 66: 1015–1024

    Article  CAS  PubMed  Google Scholar 

  5. Byrnes AP, MacLaren RE, Charlton HM . Immunological instability of persistent adenovirus vectors in the brain: peripheral exposure to vector leads to renewed inflammation, reduced gene expression, and demyelination J Neurosci 1996 16: 3045–3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Byrnes AP, Wood MJA, Charlton HM . Role of T cells in inflammation caused by adenovirus vectors in the brain Gene Therapy 1996 3: 644–651

    CAS  PubMed  Google Scholar 

  7. Geddes BJ, Harding TC, Lightman SL, Uney JB . Long-term gene therapy in the CNS: reversal of hypothalamic diabetes insipidus in the Brattleboro rat by using an adenovirus expressing arginine vasopressin Nature Med 1997 3: 1402–1404

    Article  CAS  PubMed  Google Scholar 

  8. Akli S et al. Transfer of a foreign gene into the brain using adenovirus vectors Nat Genet 1993 3: 224–228

    Article  CAS  PubMed  Google Scholar 

  9. Caillaud C et al. Adenoviral vector as a gene delivery system into cultured rat neuronal and glial cells Eur J Neurosci 1993 5: 1287–1291

    Article  CAS  PubMed  Google Scholar 

  10. Horellou P et al. Direct intracerebral gene-transfer of an adenoviral vector expressing tyrosine-hydroxylase in a rat model of Parkinsons disease Neuroreport 1994 6: 49–53

    Article  CAS  PubMed  Google Scholar 

  11. Durham HD et al. Toxicity of replication-defective adenoviral recombinants in dissociated cultures of nervous tissue Exp Neurol 1996 140: 14–20

    Article  CAS  PubMed  Google Scholar 

  12. Hermens WTJMC, Verhaagen J . Adenoviral vector-mediated gene expression in the nervous system of immunocompetent Wistar and T cell-deficient nude rats: preferential survival of transduced astroglial cells in nude rats Hum Gene Ther 1997 8: 1049–1063

    Article  CAS  PubMed  Google Scholar 

  13. Smith JG et al. Intracranial administration of adenovirus expressing HSV-TK in combination with ganciclovir produces a dose-dependent, self-limiting inflammatory response Hum Gene Ther 1997 8: 943–954

    Article  CAS  PubMed  Google Scholar 

  14. Baumgartner BJ, Shine HD . Targeted transduction of CNS neurons with adenoviral vectors carrying neurotrophic factor genes confers neuroprotection that exceeds the transduced population J Neurosci 1997 17: 6504–6511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barkats M et al. Intrastriatal grafts of embryonic mesencephalic rat neurons genetically modified using an adenovirus encoding human Cu/Zn superoxide dismutase Neuroscience 1997 78: 703–713

    Article  CAS  PubMed  Google Scholar 

  16. Gimenez y Ribotta M et al. Prevention of motoneuron death by adenovirus-mediated neurotrophic factors J Neurosci Res 1997 48: 281–285

    Article  CAS  PubMed  Google Scholar 

  17. Gravel C, Gotz R, Lorrain A, Sendtner M . Adenoviral gene transfer of ciliary neurotrophic factor and brain-derived neurotrophic factor leads to long-term survival of axotomized motor neurons Nature Med 1997 3: 765–770

    Article  CAS  PubMed  Google Scholar 

  18. Riley DJ, Nikitin AY, Lee W-H . Adenovirus-mediated retinoblastoma gene therapy suppresses spontaneous pituitary melanotroph tumors in Rb± mice Nature Med 1996 2: 1316–1321

    Article  CAS  PubMed  Google Scholar 

  19. Shine HD et al. Neurotoxicity of intracerebral injection of a replication-defective adenoviral vector in a semipermissive species (cotton rat) Gene Therapy 1997 4: 275–279

    Article  CAS  PubMed  Google Scholar 

  20. Koozekanani SH, Vise WM, Hashemi RM, McGhee RB . Possible mechanisms for observed pathophysiological variability in experimental spinal cord injury by the method of Allen J Neurosurg 1976 44: 429–434

    Article  CAS  PubMed  Google Scholar 

  21. Means ED, Anderson DK, Waters TR, Kalaf L . Effect of methylprednisolone in compression trauma to the feline spinal cord J Neurosurg 1981 55: 200–208

    Article  CAS  PubMed  Google Scholar 

  22. Reier PJ, Houle JD . The glial scar: its bearing on axonal elongation and transplantation approaches to CNS repair Adv Neurol 1988 47: 87–138

    CAS  PubMed  Google Scholar 

  23. Bunge MB et al. Characterization of photo-chemically induced spinal cord injury in the rat by light and electron microscopy Exp Neurol 1994 127: 76–93

    Article  CAS  PubMed  Google Scholar 

  24. Olby NJ, Blakemore WB . Primary demyelination and regeneration of ascending axons in the dorsal funiculus of the rat spinal cord following photochemically-induced injury J Neurocytol 1996 25: 465–480

    Article  CAS  PubMed  Google Scholar 

  25. Blakemore WF . Remyelination by Schwann cells of axons demyelinated by intraspinal injections of lysolecithin J Neurocytol 1975 4: 745–757

    Article  CAS  PubMed  Google Scholar 

  26. Keirstead HS, Blakemore WF . Identification of post-mitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord J Neuropathol Exp Neurol 1997 56: 1191–1201

    Article  CAS  PubMed  Google Scholar 

  27. Romero MI, Smith GM . Adenoviral gene transfer into the normal and injured spinal cord: enhanced transgene stability by combined administration of temperature-sensitive virus and transient immune blockade Gene Therapy 1998 5: 1612–1621

    Article  CAS  PubMed  Google Scholar 

  28. Blakemore WF, Crang AJ . The relationship between type-1 astrocytes, Schwann cells and oligodendrocytes following transplantation of glial cell cultures into demyelinating lesions in the adult rat spinal cord J Neurocytol 1989 18: 519–528

    Article  CAS  PubMed  Google Scholar 

  29. Franklin RJM, Crang AJ, Blakemore WF . Type 1 astrocytes fail to inhibit Schwann cell remyelination of CNS axons in the absence of cells of the O-2A lineage Dev Neurosci 1992 14: 85–92

    Article  CAS  PubMed  Google Scholar 

  30. Malo D, Skamene E . Genetic control of host resistance to infection Trends Genet 1994 10: 365–371

    Article  CAS  PubMed  Google Scholar 

  31. Matyszak MK, Perry VH . Demyelination in the central nervous system following a delayed-type hypersensitivity response to bacillus Calmette-Guerin Neuroscience 1995 64: 967–977

    Article  CAS  PubMed  Google Scholar 

  32. O’Leary MT, Bujdoso R, Blakemore WF . Rejection of wild-type and genetically engineered major histocompatibility complex-deficient glial cell xenografts in the central nervous system results in bystander demyelination and Wallerian degeneration Neuroscience 1998 85: 269–280

    Article  PubMed  Google Scholar 

  33. Kajiwara K et al. Immune responses to adenoviral vectors during gene transfer in the brain Hum Gene Ther 1997 8: 253–265

    Article  CAS  PubMed  Google Scholar 

  34. Harding TC et al. Switching transgene expression in the brain using an adenoviral tetracycline-regulatable system Nat Biotech 1998 16: 553–555

    Article  CAS  Google Scholar 

  35. Stratford-Perricaudet LD, Makeh I, Perricaudet M, Briand P . Widespread long-term gene-transfer to mouse skeletal muscles and heart J Clin Invest 1992 90: 626–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wood MJA, Sloan DJ, Wood KJ, Charlton HM . Indefinite survival of neural xenografts induced with anti-CD4 monoclonal antibodies Neuroscience 1996 70: 775–789

    Article  CAS  PubMed  Google Scholar 

  37. Woolett GR, Barclay AN, Puklavec M, Williams AF . Molecular and antigenic heterogenetiy of the rat leucocyte-common antigen from thymocytes and T and B lymphocytes Eur J Immunol 1985 15: 168–173

    Article  Google Scholar 

  38. Fukumoto T, McMaster WR, Williams AF . Mouse monoclonal antibodies against rat major histocompatibility antigens. Two Ia antigens and expression of Ia and class 1 antigens in rat thymus Eur J Immunol 1982 12: 237–243

    Article  CAS  PubMed  Google Scholar 

  39. McFarland HI, Nahill SR, Maciaszek JW, Welsh RM . CD11b (Mac-1): a marker for CD8+ cytotoxic T cell activation and memory in virus infection J Immunol 1992 149: 1326–1333

    CAS  PubMed  Google Scholar 

  40. Robinson AP, White TM, Mason DW . Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3 Immunology 1986 57: 239–247

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hunig T et al. A monoclonal antibody to a constant determinant of the rat T cell antigen receptor that induces T cell activation. Differential reactivity with subsets of immature and mature T lymphocytes J Exp Med 1989 169: 73–86

    Article  CAS  PubMed  Google Scholar 

  42. Paterson DJ et al. Antigens of activated rat T lymphocytes including a molecule of 50,000M detected only on CD4 positive T blasts Mol Immunol 1987 24: 1281–1290

    Article  CAS  PubMed  Google Scholar 

  43. Jefferies WA, Green JR, Williams AF . Authentic T helper CD4 (W3/25) antigen on rat peritoneal macrophages J Exp Med 1985 162: 117–127

    Article  CAS  PubMed  Google Scholar 

  44. Brideau RJ et al. Two subsets of rat T lymphocytes defined with monoclonal antibodies Eur J Immunol 1980 10: 609–615

    Article  CAS  PubMed  Google Scholar 

  45. Cantrell DA, Robins RA, Brooks CG, Baldwin RW . Phenotype of rat natural killer cells defined by monoclonal antibodies marking rat lymphocyte subsets Immunology 1982 45: 97–103

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Brenan M, Puklavec M . The MRC OX-62 antigen: a useful marker in the purification of rat veiled cells with the biochemical properties of an integrin J Exp Med 1992 175: 1457–1465

    Article  CAS  PubMed  Google Scholar 

  47. Chambers WH et al. Monoclonal antibody to a triggering structure expressed on rat natural killer cells and adherent lymphokine-activated killer cells J Exp Med 1989 169: 1373–1389

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr MM McMenamin and Dr WF Blakemore for comments on the manuscript, and Mr M Masih for expert technical assistance, and the MRC Cellular Immunology Unit for generously providing hybridoma supernatants. MT O’L holds a Wellcome Trust Research Career Development Fellowship. The work was funded by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Leary, M., Charlton, H. A model for long-term transgene expression in spinal cord regeneration studies. Gene Ther 6, 1351–1359 (1999). https://doi.org/10.1038/sj.gt.3300972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300972

Keywords

This article is cited by

Search

Quick links