Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Increase of BCNU sensitivity by wt-p53 gene therapy in glioblastoma lines depends on the administration schedule

Abstract

In this article, we investigated the effect induced by the reintroduction of wild-type p53 (wt-p53) protein on BCNU sensitivity in the ADF glioblastoma line. Using a wt-p53 recombinant adenovirus (Ad-p53), we demonstrated that exogenous wt-p53 expression was able to increase the sensitivity to BCNU in ADF cells. Interestingly, this effect was more evident when Ad-p53 infection was performed after BCNU treatment compared with the opposite sequence. To understand the biological basis of these different behaviors, we analyzed the cell cycle of the differently treated cells. We found that Ad-p53 infection induced a persistent accumulation of cells in the G0/G1 phase while, as expected, BCNU induced a block in the G2-M phase. Ad-p53→BCNU sequence did not significantly mod- ify the cell cycle profile in respect of Ad-p53 infected cells. In contrast, BCNU→Ad-p53 sequence provoked G2-M arrest similar to that observed after treatment with BCNU alone, but prevented the later recovery of the cells through the cell cycle, by driving the cells to apoptotic death. These results demonstrate that the administration sequence is important to increase drug sensitivity. To generalize the phenomenon observed on ADF line, the antiproliferative effect of the two different schedules was analyzed on other glioblastoma lines (A172, CRS-A2, U373MG) with different BCNU sensitivity and p53 status. The data obtained confirm that the wt-p53 gene transfer enhances BCNU sensitivity in glioblastoma cells depending on the administration sequence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Maxwell M et al. Coexpression of platelet-derived growth factor (PDGF) and PDGF-receptor genes by primary human astrocytomas may contribute to their development and maintenance J Clin Invest 1990 86: 131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ammirati M, Galicch JH, Arbit E, Liao Y . Re-operation in the treatment of recurrent intracranial malignant gliomas Neurosurgery 1987 21: 607–614

    Article  CAS  PubMed  Google Scholar 

  3. Tannock IF . Experimental chemotherapy and concepts related to the cell cycle Int J Radiat Biol 1986 49: 335–355

    CAS  Google Scholar 

  4. Brandes AA, Fiorentino MV . The role of chemotherapy in recurrent malignant gliomas: an overview Cancer Invest 1996 14: 551–559

    Article  CAS  PubMed  Google Scholar 

  5. Ohgaki H et al. Mutations of the p53 tumor suppressor gene in neoplasms of the human nervous system Mol Carcinog 1993 8: 74–80

    Article  CAS  PubMed  Google Scholar 

  6. Frankel RH, Bayona W, Koslow M, Newcomb EW . P53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation frequency Cancer Res 1992 52: 1427–1433

    CAS  PubMed  Google Scholar 

  7. Hollstein M, Sidransky D, Vogelstein B, Harris CC . P53 mutations in human cancers Science 1991 253: 49–53

    Article  CAS  Google Scholar 

  8. Levine AJ, Momand J, Finlay CA . The p53 tumour suppressor gene Nature 1991 351: 453–455

    Article  CAS  PubMed  Google Scholar 

  9. Fults D et al. P53 mutation and loss of heterozygosity on chromosomes 17 and 10 during human astrocytoma progression Cancer Res 1992 52: 674–679

    CAS  PubMed  Google Scholar 

  10. Malkin D . P53 and the Li–Fraumeni syndrome Cancer Genet Cytogenet 1993 66: 83–92

    Article  CAS  PubMed  Google Scholar 

  11. Louis DN . The p53 gene and protein in human brain tumors J Neuropathol Exp Neurol 1994 53: 11–21

    Article  CAS  PubMed  Google Scholar 

  12. Hayashi Y, Yamashita J, Yamaguchi K . Timing and role of p53 gene mutation in the recurrence of glioma Biochem Biophys Res Comm 1991 180: 1145–1150

    Article  CAS  PubMed  Google Scholar 

  13. Sidranski D et al. Clonal expansion of p53 mutant cells is associated with brain tumour progression Nature 1992 355: 846–847

    Article  Google Scholar 

  14. Gottlied TM, Oren M . P53 in growth control and neoplasia Biochim Biophys Acta 1996 1287: 77–102

    Google Scholar 

  15. Soddu S et al. Interference with p53 protein inhibits hematopoietic and muscle differentiation J Cell Biol 1996 134: 11–12

    Article  Google Scholar 

  16. Mercer WE et al. Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53 Proc Natl Acad Sci USA 1990 87: 6166–6170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Köck H et al. Adenovirus-mediated p53 gene transfer suppresses growth of human glioblastoma cells in vitro and in vivo Int J Cancer 1996 67: 808–815

    Article  PubMed  Google Scholar 

  18. Gomez-Manzano C et al. Adenovirus-mediated transfer of the p53 gene produces rapid and generalized death of human glioma cells via apoptosis Cancer Res 1996 56: 694–699

    CAS  PubMed  Google Scholar 

  19. Merzak A et al. Human wild-type p53 inhibits cell proliferation and elicits dramatic morphological changes in human glioma cell lines in vitro J Neurol Sci 1994 127: 125–133

    Article  CAS  PubMed  Google Scholar 

  20. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB . Wild-type p53 is a cell cycle checkpoint determinant following irradiation Proc Natl Acad Sci USA 1992 89: 7491–7495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fan S et al. P53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA-damaging agents Cancer Res 1994 54: 5824–5830

    CAS  PubMed  Google Scholar 

  22. Shaw P et al. Induction of apoptosis by wild-type p53 in a human colon tumor derived cell line Proc Natl Acad Sci. USA 1992 89: 4495–4499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yonsh-Roach E et al. Wild-type p53 induces apoptosis of myeloid leukemic cells that is inhibited by interleukin 6 Nature 1991 352: 345–347

    Article  Google Scholar 

  24. Lowe SW et al. P53 is required for radiation-induced apoptosis in mouse thymocites Nature 1993 362: 847–850

    Article  CAS  PubMed  Google Scholar 

  25. Donehower LA et al. Mice deficient for p53 are develomentally normal but suseptible to spontaneous tumours Nature 1992 356: 215–218

    Article  CAS  PubMed  Google Scholar 

  26. Ozturk M, Ponchel F, Pulsleux A . P53 as a potential target in cancer therapy Bone Marrow Transplant 1992 9: 164–170

    PubMed  Google Scholar 

  27. Gjerset RA et al. Use of wild-type p53 to achieve complete treatment sensitization of tumor cells expressing endogenous mutant p53 Mol Carcinog 1995 14: 275–285

    Article  CAS  PubMed  Google Scholar 

  28. Blagosklonny MV, El-Deiry WS . In vitro evaluation of a p53-expressing adenovirus as an anti-cancer drug Int J Cancer 1996 67: 386–392

    Article  CAS  PubMed  Google Scholar 

  29. Clarke AR et al. Thymocyte apoptosis induced by p53-dependent and independent pathways Nature 1993 362: 849–852

    Article  CAS  PubMed  Google Scholar 

  30. Lowe SW, Ruley HE, Jacks T, Housman DE . P53-dependent apoptosis modulates the cytotoxicity of anticancer agents Cell 1993 74: 957–967

    Article  CAS  PubMed  Google Scholar 

  31. Parsels LA et al. Prevention of fluorodeoxyuridine-induced cytotoxicity and DNA damage in HT29 colon carcinoma cells by conditional expression of wild-type p53 phenotype Mol Pharmacol 1997 52: 600–605

    Article  CAS  PubMed  Google Scholar 

  32. Brachman DG et al. P53 mutation does not correlate with radiosensitivity in head and neck cancer cell lines Cancer Res 1993 53: 3666–3669

    Google Scholar 

  33. Fan S et al. Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline Cancer Res 1995 55: 1649–1654

    CAS  PubMed  Google Scholar 

  34. Gannon JV, Greaves R, Iggo R, Lane DP . Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form EMBO J 1990 9: 1595–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wolf D, Rotter V . Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL60 cells Proc Natl Acad Sci. USA 1985 82: 790–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tannock IF . Cell kinetics and chemotherapy: a critical review Cancer Treat Rep 1978 62: 1117–1133

    CAS  PubMed  Google Scholar 

  37. Guillouf C et al. P53 involvement in control of G2 exit of the cell cycle: role in DNA damage-induced apoptosis Oncogene 1995 10: 2263–2270

    CAS  PubMed  Google Scholar 

  38. Skladanowski A, Larsen AK . Expression of wild-type p53 increases etoposide cytotoxicity in M1 myeloid leukemia cells by facilitated G2 to M transition: implications for gene therapy Cancer Res 1997 57: 818–823

    CAS  PubMed  Google Scholar 

  39. Fabrizi C et al. Interferon gamma up-regulates alpha 2 macroglobulin expression in human astrocytoma cells J Neuroimmunol 1994 53: 31–37

    Article  CAS  PubMed  Google Scholar 

  40. Paggi MG et al. Defective human retinoblastoma protein identified by lack of interaction with the E1A oncoprotein Cancer Res 1994 54: 1098–1104

    CAS  PubMed  Google Scholar 

  41. Bacchetti S, Graham FL . Inhibition of cell proliferation by an adenovirus vector expressing the human wild-type p53 protein Int J Cancer 1993 3: 781–788

    CAS  Google Scholar 

  42. Del Bufalo D et al. Lonidamine induces apoptosis in drug-resistant cells independently of the p53 gene J Clin Invest 1996 98: 1165–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eustice DC et al. A sensitive method for the detection of beta-galactosidase in transfected mammalian cells Biotechniques 1991 11: 739–740

    CAS  PubMed  Google Scholar 

  44. Gorman CM, Moffat LF, Howard BH . Recombinant genomes which express chloramphenicol in mammalian cells Mol Cell Biol 1982 2: 1044–1051

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S Bacchetti and F Graham for generous gift of recombinant adenovirus and B Vogelstein for providing the PG13-CAT and MG15-CAT vectors. We are grateful to Mrs Simona Righi for typing this manuscript. AB is a recipient of fellowships from AIRC. AR is a recipient of fellowships from FIRC. This work was supported by Italian Association for Cancer Research, Ministero della Sanità and Italy-USA Program.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biroccio, A., Del Bufalo, D., Ricca, A. et al. Increase of BCNU sensitivity by wt-p53 gene therapy in glioblastoma lines depends on the administration schedule. Gene Ther 6, 1064–1072 (1999). https://doi.org/10.1038/sj.gt.3300935

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300935

Keywords

This article is cited by

Search

Quick links