Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Intercellular delivery of thymidine kinase prodrug activating enzyme by the herpes simplex virus protein, VP22

Abstract

We demonstrate that fusion proteins consisting of the herpes simplex virus (HSV) transport protein VP22 linked in frame to HSV thymidine kinase (tk) retain the ability to be transported between cells. In vivo radiolabelling experiments and in vitro assays show that the fusion proteins also retain tk activity. When transfected COS cells, acting as a source of the VP22-tk chimera, were co-plated on to gap junction-negative neuroblastoma cells, ganciclovir treatment induced efficient cell death in the recipient neuroblastoma cell monolayer. No such effect was observed with COS cells transfected with tk alone. Tumours established in mice with neuroblastoma cell lines expressing VP22-tk regressed upon administration of ganciclovir. Furthermore tumours established from 50:50 mixtures of VP22-tk transduced and nontransduced cells also regressed while no significant effect was observed in similar experiments with cells transduced with tk alone. VP22 mediated transport may thus have application in a clinical setting to amplify delivery of the target protein in enzyme-prodrug protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Marcel T, Grausz JD . The TMC Worldwide Gene Therapy Enrollment Report, end 1996 Hum Gene Ther 1997 8: 775–800

    Article  CAS  PubMed  Google Scholar 

  2. Ram Z et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells Nature Med 1997 3: 1354–1361

    Article  CAS  PubMed  Google Scholar 

  3. Verma I, Somia N . Gene therapy problems, promises and prospects Nature 1997 389: 239–242

    CAS  PubMed  Google Scholar 

  4. Bi WL, Parysek LM, Warnick R, Stambrook PJ . In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSVtk retroviral gene therapy Hum Gene Ther 1993 4: 725–731

    Article  CAS  PubMed  Google Scholar 

  5. Freeman SM et al. The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified Cancer Res 1993 53: 5274–5283

    CAS  PubMed  Google Scholar 

  6. Dilber MS et al. Gap junctions promote the bystander effect of herpes simplex virus thymidine kinase in vivo Cancer Res 1997 57: 1523–1528

    CAS  PubMed  Google Scholar 

  7. Ishii-Morita H et al. Mechanism of ‘bystander effect’ killing in the herpes simplex thymidine kinase gene therapy model of cancer treatment Gene Therapy 1997 4: 244–251

    Article  CAS  PubMed  Google Scholar 

  8. Ruch RJ . The role of gap junctional intercellular communication in neoplasia Ann Clin Lab Sci 1994 24: 216–231

    CAS  PubMed  Google Scholar 

  9. Shinoura N et al. Protein and messenger RNA expression of connexin43 in astrocytomas: implications in brain tumor gene therapy J Neurosurg 1996 84: 839–845

    Article  CAS  PubMed  Google Scholar 

  10. Elliott G, O’Hare P . Intercellular trafficking and protein delivery by a herpesvirus structural protein Cell 1997 88: 223–233

    Article  CAS  PubMed  Google Scholar 

  11. Vrionis FD et al. The bystander effect exerted by tumor cells expressing the herpes simplex virus thymidine kinase (HSVtk) gene is dependent on connexin expression and cell communication via gap junctions Gene Therapy 1997 4: 577–585

    Article  CAS  PubMed  Google Scholar 

  12. Kuriyama S et al. Tissue-specific expression of HSVtk gene can induce efficient antitumor effect and protective immunity to wild-type hepatocellular carcinoma Int J Cancer 1997 71: 470–475

    Article  CAS  PubMed  Google Scholar 

  13. Vile RG, Hart IR . Use of tissue-specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth ofestablished murine melanomas following direct intratumoralinjection of DNA Cancer Res 1993 53: 3860–3864

    CAS  PubMed  Google Scholar 

  14. Rosolen A et al. In vitro and in vivo antitumor effects of retrovirus-mediated herpes simplex thymidine kinase gene-transfer in human medulloblastoma Gene Therapy 1998 5: 113–120

    Article  CAS  PubMed  Google Scholar 

  15. Lechanteur C et al. HSV-1 thymidine kinase gene therapy for colorectal adenocarcinoma-derived peritoneal carcinomatosis Gene Therapy 1997 4: 1189–1194

    Article  CAS  PubMed  Google Scholar 

  16. Melcher A et al. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression Nature Med 1998 4: 581–587

    Article  CAS  PubMed  Google Scholar 

  17. Wallace H et al. Ganciclovir-induced ablation non-proliferating thyrocytes expressing herpes virus thymidine kinase occurs by p53-independent apoptosis Oncogene 1996 13: 55–61

    CAS  PubMed  Google Scholar 

  18. Hamel W, Magnelli L, Chiarugi VP, Isreal MA . Herpes simplex virus thymidine kinase/ganciclovir-mediated apoptotic death of bystander cells Cancer Res 1996 56: 2697–2702

    CAS  PubMed  Google Scholar 

  19. Vile RG et al. Systemic gene therapy of murine melanoma using tissue-specific expression of the HSVtk gene involves an immune component Cancer Res 1994 54: 6228–6234

    CAS  PubMed  Google Scholar 

  20. Klatzmann D . Gene therapy for metastatic malignant melanoma: evaluation of tolerance to intratumoral injection of cells producing recombinant retroviruses carrying the herpes simplex virus type 1 thymidine kinase gene, to be followed by ganciclovir administration Hum Gene Ther 1996 7: 255–267

    Article  CAS  PubMed  Google Scholar 

  21. Ramesh R et al. In vivo analysis of the ‘bystander effect’: a cytokine cascade Exp Hematol 1996 24: 829–838

    CAS  PubMed  Google Scholar 

  22. Phelan A, Elliott G, O’Hare P . Intercellular delivery of functional p53 by the herpes virus protein VP22 Nat Biotechnol 1998 16: 440–443

    Article  CAS  PubMed  Google Scholar 

  23. Miller AD, Rosman GJ . Improved retroviral vectors for gene transfer and expression Biotechniques 1989 7: 980–990

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pear WS, Nolan GP, Scott ML, Baltimore MA . Production of high-titer helper-free retroviruses by transient transfection Proc Natl Acad Sci USA 1993 90: 8392–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boussif O et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine Proc Natl Acad Sci USA 1995 92: 7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Honess RW, O’Hare P, Young D . Comparison of thymidine kinase activities induced in cells productively infected with herpes virus saimiri and herpes simplex virus J Gen Virol 1982 58: 237–249

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dilber, M., Phelan, A., Aints, A. et al. Intercellular delivery of thymidine kinase prodrug activating enzyme by the herpes simplex virus protein, VP22. Gene Ther 6, 12–21 (1999). https://doi.org/10.1038/sj.gt.3300838

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300838

Keywords

This article is cited by

Search

Quick links