Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Involvement of Fas (CD95/APO-1) and Fas ligand in apoptosis induced by ganciclovir treatment of tumor cells transduced with herpes simplex virus thymidine kinase

Abstract

Transduction of cancer cells with herpes simplex virus thymidine kinase gene (HSVtk) followed by prodrug ganciclovir (GCV) treatment has been shown to induce apoptosis. In this study, four murine tumors including B16F10 melanoma, NG4TL4 sarcoma, H6 hepatoma and 1MEA 7R.1 hepatoma were found to vary in sensitivity to this gene therapy strategy in vitro but, at effective doses of GCV, the HSVtk-transduced cells of all four tumors showed similar kinetics of early rise in p53 protein levels, then cell cycle S-/G2-phase arrest and finally signs of apoptosis. Immunoblot analyses revealed that Fas (CD95/APO-1), Fas ligand (FasL) and two downstream mediators, RIP and caspase-3 (CPP32, YAMA, Apopain) were increased in GCV-treated HSVtk-transduced tumor cells after the cell cycle arrest and before apoptosis. Increased expression of FasL could also be observed in vivo in HSVtk-transduced tumors induced to regress by GCV treatment. Enzyme measurements using specific substrate showed that the caspase-3 activation followed kinetically the FasL expression. More than half of the HSVtk/GCV-induced cell death could be abrogated by addition to the cell culture medium of a specific antisense oligonucleotide to block FasL synthesis, a recombinant Fas/Fc chimeric protein to compete with Fas receptor for FasL binding, or cell-permeable specific tetrapeptide inhibitors of caspase-3 or caspase-8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase gene: paradigm for a prospective cancer control strategy Cancer Res 1986 46: 5276–5281

    CAS  PubMed  Google Scholar 

  2. Oldfield EH et al. Gene therapy for the treatment of brain tumors using intra-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir Hum Gene Ther 1993 4: 39–69

    Article  CAS  PubMed  Google Scholar 

  3. Freeman SM et al. The treatment of ovarian cancer with a gene modified cancer vaccine: a phase I study Hum Gene Ther 1995 6: 927–939

    Article  CAS  PubMed  Google Scholar 

  4. Mar E, Chiou J, Cheng Y, Huang E . Inhibition of cellular DNA polymerase alpha and human cytomegalovirus-induced DNA polymerase by the triphosphates of 9-(2-hydroxy-ethoxymethyl) guanine and 9-(1,3-dihydroxy-2-propoxymethyl) guanine J Virol 1985 53: 776–780

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Frank KB, Chiou J, Cheng Y . Interaction of herpes simplex virus-induced DNA polymerase with 9-(1,3-dihydroxy-2-propoxymethyl) guanine triphosphate J Biol Chem 1984 259: 1566–1569

    CAS  PubMed  Google Scholar 

  6. Freeman SM et al. The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified Cancer Res 1993 53: 5274–5283

    CAS  PubMed  Google Scholar 

  7. Wei SJ et al. S- and G2-phase cell cycle arrests and apoptosis induced by ganciclovir in murine melanoma cells transduced with herpes simplex virus thymidine kinase Exp Cell Res 1998 241: 66–75

    Article  CAS  PubMed  Google Scholar 

  8. Colombo BM et al. The ‘bystander effect’: association of U-87 cell death with ganciclovir-mediated apoptosis of nearby cells and lack of effect in athymic mice Hum Gene Ther 1995 6: 763–772

    Article  CAS  PubMed  Google Scholar 

  9. Kaneko Y, Tsukamoto A . Gene therapy of hepatoma: bystander effects and non-apoptotic cell death induced by thymidine kinase and ganciclovir Cancer Lett 1995 96: 105–110

    Article  CAS  PubMed  Google Scholar 

  10. Hamel W, Magnelli L, Chiarugi VP, Israel MA . Herpes simplex virus thymidine kinase/ganciclovir-mediated apoptotic death of bystander cells Cancer Res 1996 56: 2697–2702

    CAS  PubMed  Google Scholar 

  11. Nagata S, Suda T . Fas and Fas ligand: lpr and gld mutations Immunol Today 1995 16: 39–43

    Article  CAS  PubMed  Google Scholar 

  12. Nagata S, Golstein P . The Fas death factor Science 1995 267: 1449–1456

    Article  CAS  PubMed  Google Scholar 

  13. Fraser A, Evan G . A license to kill Cell 1996 85: 781–784

    Article  CAS  PubMed  Google Scholar 

  14. Nagata S . Apoptosis by death factor Cell 1997 88: 355–365

    Article  CAS  PubMed  Google Scholar 

  15. Stanger BZ et al. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death Cell 1995 81: 513–523

    Article  CAS  PubMed  Google Scholar 

  16. Enari M, Talanian RV, Wong WW, Nagata S . Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis Nature 1996 380: 723–726

    Article  CAS  PubMed  Google Scholar 

  17. Nicholson DW et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis Nature 1995 376: 37–43

    Article  CAS  PubMed  Google Scholar 

  18. Tewari M et al. Yama/CPP32β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase Cell 1995 81: 801–809

    Article  CAS  PubMed  Google Scholar 

  19. Armstrong RC et al. Fas-induced activation of the cell death-related protease CPP32 is inhibited by Bcl-2 and ICE family protease inhibitors J Biol Chem 1996 271: 16850–16855

    Article  CAS  PubMed  Google Scholar 

  20. Kayagaki N et al. Polymorphism of murine Fas ligand that affects the biological activity Proc Natl Acad Sci USA 1997 94: 3914–3919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Newmeyer DD, Farschon DM, Reed JC . Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria Cell 1994 79: 353–364

    Article  CAS  PubMed  Google Scholar 

  22. Chinnaiyan AM et al. Molecular ordering of the cell death pathway: Bcl-2 and Bcl-XL function upstream of the CED-3-like apoptotic proteases J Biol Chem 1996 271: 4573–4576

    Article  CAS  PubMed  Google Scholar 

  23. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD . The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis Science 1997 275: 1132–1136

    Article  CAS  PubMed  Google Scholar 

  24. Yang J et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked Science 1997 275: 1129–1132

    Article  CAS  PubMed  Google Scholar 

  25. Owen-Schaub LB et al. Wild-type human p53 and a temperature-sensitive mutant induce fas/APO-1 expression Mol Cell Biol 1995 15: 3032–3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Muller M et al. Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53 J Clin Invest 1997 99: 403–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Villunger A et al. Drug-induced apoptosis is associated with enhanced Fas (APO-1/CD95) ligand expression but occurs independently of Fas (APO-1/CD95) signaling in human T acute lymphatic leukemia cells Cancer Res 1997 57: 3331–3334

    CAS  PubMed  Google Scholar 

  28. Friesen C, Herr I, Krammer PH, Debatin KM . Involvement of the CD95 (APO-1/Fas) receptor/ligand system in drug-induced apoptosis in leukemia cells Nature Med 1996 2: 574–577

    Article  CAS  PubMed  Google Scholar 

  29. Itoh N, Tsujimoto Y, Nagata S . Effect of bcl-2 on Fas antigen-mediated cell death J Immunol 1993 151: 621–627

    CAS  PubMed  Google Scholar 

  30. Lacronique V et al. Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice Nature Med 1996 2: 80–86

    Article  CAS  PubMed  Google Scholar 

  31. Fick J et al. The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro Proc Natl Acad Sci USA 1995 92: 11071–11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Elshami AA et al. Gap junctions play a role in the ‘bystander effect’ of the herpes simplex virus thymidine kinase/ganciclovir system in vitro Gene Therapy 1996 3: 85–92

    CAS  PubMed  Google Scholar 

  33. Mesnil M et al. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins Proc Natl Acad Sci USA 1996 93: 1831–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Badley AD et al. Upregulation of Fas ligand expression by human immunodeficiency virus in human macrophages mediates apoptosis of uninfected T lymphocytes J Virol 1996 70: 199–206

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dilber MS et al. Suicide gene therapy for plasma cell tumor Blood 1996 88: 2192–2200

    CAS  PubMed  Google Scholar 

  36. Griffith TS, Ferguson TA . The role of FasL-induced apoptosis in immune privilege Immunol Today 1997 18: 240–244

    Article  CAS  PubMed  Google Scholar 

  37. Hahne M et al. Melanoma cell expression of Fas (Apo-1/CD95) ligand: implications for tumor immune escape Science 1996 274: 1363–1366

    Article  CAS  PubMed  Google Scholar 

  38. Nagata S . Fas ligand and immune evasion Nature Med 1996 2: 1306–1307

    Article  CAS  PubMed  Google Scholar 

  39. Strand S et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells – a mechanism of immune evasion? Nature Med 1996 2: 1361–1366

    Article  CAS  PubMed  Google Scholar 

  40. Yang WK et al. ‘Integrase’ protein of murine ecotropic murine leukemia viruses. In: Wu CW, Wu F (eds) . Structure and Function of Proteins and Nucleic Acids Raven Press: New York 1990 261–274

    Google Scholar 

  41. McKnight SL . The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene Nucleic Acids Res 1980 8: 5949–5964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Green LM, Reade JL, Ware CF . Rapid colorimetric assay for cell viability: application to the quantitation of cytotoxic and growth inhibitory lymphokines J Immunol Meth 1984 70: 257–268

    Article  CAS  Google Scholar 

  43. Telford WG, King LE, Fraker PJ . Rapid quantitation of apoptosis in pure and heterogeneous cell populations using flow cytometry J Immunol Meth 1994 172: 1–16

    Article  CAS  Google Scholar 

  44. Hermann M et al. A rapid and simple method for the isolation of apoptotic DNA fragments Nucleic Acids Res 1994 22: 5506–5507

    Article  Google Scholar 

  45. Liu XS, Zou H, Slaughter C, Wang XD . DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis Cell 1997 89: 175–184

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, SJ., Chao, Y., Shih, YL. et al. Involvement of Fas (CD95/APO-1) and Fas ligand in apoptosis induced by ganciclovir treatment of tumor cells transduced with herpes simplex virus thymidine kinase. Gene Ther 6, 420–431 (1999). https://doi.org/10.1038/sj.gt.3300817

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300817

Keywords

This article is cited by

Search

Quick links