Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Gene transfer with synthetic virus-like particles via the integrin-mediated endocytosis pathway

Abstract

The interaction between cationic DNA-containing particles and cell surface anionic proteoglycans is an efficient means of entering cultured cells. Therapeutic in vivo gene delivery levels, however, require binding to less ubiquitous molecules. In an effort to follow adenovirus, thiol-derivatized polyethylenimine (PEI) was conjugated to the integrin-binding peptid CYGGRGDTP via a disulfide bridge. The most extensively conjugated derivative (5.5% of the PEI aminefunctions) showed physical properties of interest for systemic gene delivery. In the presence of excess PEI-RGD, plasmid DNA was condensed into a rather homogeneous population of 30–100 nm toroidal particles as revealed by electron microscopy images in 150 mM salt. Their surface charge was close to neutrality as a consequence of the shielding effect of the prominent zwitterionic peptide residues. Transfection efficiency of integrin-expressing epithelial (HeLa) and fibroblast (MRC5) cells was increased by 10- to 100-fold as compared with PEI, even in serum. This large enhancement factor was lost when aspartic acid was replaced by glutamic acid in the targeted peptide sequence (RGD/RGE), confirming the involvement of integrins in transfection. PEI-RGD/DNA complexes thus share with adenovirus constitutive properties such as size and a centrally protected DNA core, and ‘early properties, ie cell entry mediated by integrins and acid-triggered endosome escape.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Behr JP, Demeneix B, Loeffler J, Perez-Mutul J . Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA Proc Natl Acad Sci USA 1989 86: 6982–6986

    Article  CAS  Google Scholar 

  2. Mislick KA, Baldeschwieler JD . Evidence for the role of proteoglycans in cation-mediated gene transfer Proc Natl Acad Sci USA 1996 93: 12349–12354

    Article  CAS  Google Scholar 

  3. Labat-Moleur F et al. An electron microscopy study into the mechanism of gene transfer with lipopolyamines Gene Therapy 1996 3: 1010–1017

    CAS  PubMed  Google Scholar 

  4. Plank C, Mechtler K, Szoka FC, Wagner E . Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery Hum Gene Ther 1996 7: 1437–1446

    Article  CAS  Google Scholar 

  5. Frese J, Wu CH, Wu GY . Targeting of genes to the liver with glycoprotein carriers Adv Drug Delivery Rev 1994 14: 137–152

    Article  CAS  Google Scholar 

  6. Monsigny M, Roche AC, Midoux P, Mayer R . Glycoconjugates as carriers for specific delivery of therapeutic drugs and genes Adv Drug Delivery Rev 1994 14: 1–24

    Article  CAS  Google Scholar 

  7. Wagner E, Curiel D, Cotten M . Delivery of drugs, proteins and genes into cells using transferrin as a ligand for receptor-mediated endocytosis Adv Drug Delivery Rev 1994 14: 113–135

    Article  CAS  Google Scholar 

  8. Wu GY et al. Receptor-mediated gene delivery in vivo – partial correction of genetic analbuminemia in nagase rats J Biol Chem 1991 266: 14338–14342

    CAS  PubMed  Google Scholar 

  9. Perales JC, Ferkol T, Molas M, Hanson MR . An evaluation of receptor-mediated gene transfer using synthetic DNA–ligand complexes Eur J Biochem 1994 226: 255–266

    Article  CAS  Google Scholar 

  10. Cotten M et al. Transferrin-polycation-mediated introduction of DNA into human leukemic cells: stimulation by agents that affect the survival of transfected DNA or modulate transferrin receptor levels Proc Natl Acad Sci USA 1990 87: 4033–4037

    Article  CAS  Google Scholar 

  11. Plank C et al. Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand Bioconjugate Chem 1992 3: 533–539

    Article  CAS  Google Scholar 

  12. Midoux P et al. Specific gene transfer mediated by lactosylated poly-L-lysine into hepatoma cells Nucleic Acids Res 1993 21: 871–878

    Article  CAS  Google Scholar 

  13. Erbacher P et al. Putative role of chloroquine in gene transfer into a human hepatoma cell line by DNA lactosylated polylysine complexes Exp Cell Res 1996 225: 186–194

    Article  CAS  Google Scholar 

  14. Curiel DT, Agarwal S, Wagner E, Cotten M . Adenovirus enhancement of transferrin polylysine-mediated gene delivery Proc Natl Acad Sci USA 1991 88: 8850–8854

    Article  CAS  Google Scholar 

  15. Wagner E et al. Coupling of adenovirus to transferrin-polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes Proc Natl Acad Sci USA 1992 89: 6099–6103

    Article  CAS  Google Scholar 

  16. Boussif O et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine Proc Natl Acad Sci USA 1995 92: 7297–7301

    Article  CAS  Google Scholar 

  17. Boussif O, Zanta MA, Behr JP . Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold Gene Therapy 1996 3: 1074–1080

    CAS  PubMed  Google Scholar 

  18. Behr JP . The proton sponge, a means to enter cells viruses never thought of M/S-Med Sci 1996 12: 56–58

    Google Scholar 

  19. Zanta MA, Boussif O, Adib A, Behr JP . In vitro gene delivery to hepatocytes with galactosylated polyethylenimine Bioconjugate Chem 1997 8: 839–844

    Article  CAS  Google Scholar 

  20. Kren BT, Bandyopadhyay P, Steer C . In vivo site-directed mutagenesis of the factor IX gene by chimeric RNA/DNA oligonucleotides Nature Med 1998 4: 285–290

    Article  CAS  Google Scholar 

  21. Kircheis R et al. Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery Gene Therapy 1997 4: 409–418

    Article  CAS  Google Scholar 

  22. Springer TA . Adhesion receptors of immune system Nature 1990 346: 425–434

    Article  CAS  Google Scholar 

  23. Buck CA, Horwitz AF . Cell surface receptors for extracellular matrix molecules Ann Rev Cell Biol 1987 3: 179–205

    Article  CAS  Google Scholar 

  24. Hynes RO . Integrins: versality, modulation, and signalling in cell adhesion Cell 1992 69: 11–25

    Article  CAS  Google Scholar 

  25. Pierschbacher MD, Ruoslathi E . Cell attachment activity of fibronectin can be duplicated by small fragments of the molecule Nature 1984 309: 30–33

    Article  CAS  Google Scholar 

  26. Panetti TS, McKeown-Longo PJ . The alphaVbeta5 integrin receptor regulates receptor-mediated endocytosis of vitronectin J Biol Chem 1993 268: 11492–11495

    CAS  Google Scholar 

  27. Wickham TJ, Mathias P, Cheresh DA, Nemerov GN . Integrins alpha Vβ3 and alphaVβ5 promote adenovirus internalization but not virus attachment Cell 1993 73: 309–319

    Article  CAS  Google Scholar 

  28. Bergelson JM et al. Identification of the integrin VLA-2 as a receptor for echovirus I Science 1992 255: 1718–1720

    Article  CAS  Google Scholar 

  29. Logan D et al. Structure of a immunogenic site on foot-and-mouth disease virus Nature 1993 362: 566–568

    Article  CAS  Google Scholar 

  30. Neumann R, Chroboczek J, Jacrot B . Determination of the nucleotide sequence for the penton-base gene of human adenovirus type 5 Gene 1988 69: 153–157

    Article  CAS  Google Scholar 

  31. Bergelson JM et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5 Science 1997 275: 1320–1323

    Article  CAS  Google Scholar 

  32. Hong SS et al. Adenovirus type 5 fiber knob binds to MHC class I alpha 2 domain at the surface of human epithelial and B lymphoblastoid cells EMBO J 1997 16: 2294–2306

    Article  CAS  Google Scholar 

  33. Greber UF, Willetts M, Webster P, Helenius A . Stepwise dismantling of adenovirus 2 during entry into cells Cell 1993 75: 477–486

    Article  CAS  Google Scholar 

  34. Berkner KL . Development of adenovirus vectors for expression of heterologous genes BioTechniques 1986 6: 616–629

    Google Scholar 

  35. Rosenfeld MA et al. Adenovirus-mediated transfer of a recombinant alpha-L-antitrypsin gene to the lung epithelium in vivo Science 1991 252: 431–434

    Article  CAS  Google Scholar 

  36. Jaffe HA et al. Adenovirus-mediated in vivo gene transfer and expression in normal rat liver Nat Genet 1992 1: 372–378

    Article  CAS  Google Scholar 

  37. Stratford-Perricaudet LD, Briand P, Perricaudet M . Feasibility of adenovirus-mediated gene transfer in vivo Bone Marrow Transplant 1992 9: 151–152

    PubMed  Google Scholar 

  38. Pierschbacher MD, Ruoslathi E . Variants of the cell recognition site of fibronectin that retain attachment-promoting activity Proc Natl Acad Sci USA 1984 81: 5985–5988

    Article  CAS  Google Scholar 

  39. Akiyama SK, Yamada KM . Synthetic peptides competitively inhibit both direct binding to fibroblasts and functional biological assays for the purified cell-binding domain of fibronectin J Biol Chem 1985 260: 10402–10405

    CAS  PubMed  Google Scholar 

  40. Cheresh DA, Spiro RC . Biosynthetic and functional properties of an arg-gly-asp-directed receptor involved in human melanoma cell attachment to vitronectin, fibrinogen and von Willebrand factor J Biol Chem 1987 262: 17703–17711

    CAS  Google Scholar 

  41. Hart SL et al. Gene delivery and expression mediated by an integrin-binding peptide Gene Therapy 1996 3: 1032–1033

    CAS  Google Scholar 

  42. Harbottle RP et al. An RGD-oligolysine peptide: a prototype construct for integrin-mediated gene delivery Hum Gene Ther 1998 9: 1037–1047

    Article  CAS  Google Scholar 

  43. Mellman I, Fuchs R, Helenius A . Acidification of the endocytic and exocytic pathways Ann Rev Biochem 1986 55: 663–700

    Article  CAS  Google Scholar 

  44. Smythe E, Warren G . The mechanism of receptor-mediated endocytosis Eur J Biochem 1991 202: 689–699

    Article  CAS  Google Scholar 

  45. Carlsson J, Drevin H, Axen R . Protein thiolation and reversible protein–protein conjugation. N-succinimidyl-3-(2-pyridyldithio)propionate, a new heterobifunctional reagent Biochem J 1978 173: 723–737

    Article  CAS  Google Scholar 

  46. Tang MX, Szoka FC . The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes Gene Therapy 1997 4: 823–832

    Article  CAS  Google Scholar 

  47. Dunlap DD, Maggi A, Soria MR, Monaco L . Nanoscopic structure of DNA condensed for gene delivery Nucleic Acids Res 1997 25: 3095–3101

    Article  CAS  Google Scholar 

  48. Remy JS et al. Gene transfer with lipospermines and polyethylenimines Adv Drug Delivery Rev 1998 30: 85–95

    Article  CAS  Google Scholar 

  49. Shieh MT et al. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans J Cell Biol 1992 116: 1273–1281

    Article  CAS  Google Scholar 

  50. Summerfold C, Samulski RJ . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions J Virol 1998 72: 1438–1445

    Google Scholar 

  51. Pierschbacher MD, Ruoslathi E . Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion J Biol Chem 1987 262: 17294–17298

    CAS  PubMed  Google Scholar 

  52. Dedhar S, Ruoslahti E, Pierschbacher MD . A cell surface receptor complex for collagen type I recognizes the Arg-Gly-Asp sequence J Cell Biol 1987 104: 585–593

    Article  CAS  Google Scholar 

  53. Gehlsen KR, Argraves WS, Pieschbacher MD, Ruoslahti E . Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides J Cell Biol 1988 106: 925–930

    Article  CAS  Google Scholar 

  54. Erbacher P, Roche AC, Monsigny M, Midoux P . Glycosylated polylysine/DNA complexes: gene transfer efficiency in relation with the size and the sugar substitution level of glycosylated polylysines and with the plasmid size Bioconjugate Chem 1995 6: 401–410

    Article  CAS  Google Scholar 

  55. Wadhwa MS et al. Peptide-mediated gene delivery: influence of peptide structure on gene expression Bioconjugate Chem 1997 8: 81–88

    Article  CAS  Google Scholar 

  56. Hart SL, Collins L, Gustafsson K, Fabre JW . Integrin-mediated transfection with peptides containing arginine-glycine-aspartic acid domains Gene Therapy 1997 4: 1225–1230

    Article  CAS  Google Scholar 

  57. Rankin S, Isberg RR, Leong JM . The integrin-binding domain of invasin is sufficient to allow bacterial entry into mammalian cells Infect Immunol 1992 60: 3909–3912

    CAS  Google Scholar 

  58. Tran Van Nhieu G, Isberg RR . Bacterial internalization mediated by beta 1 chain integrins is determined by ligand affinity and receptor density EMBO J 1993 12: 1887–1895

    Article  CAS  Google Scholar 

  59. Hart SL et al. Cell binding and internalization by filamentous phage displaying a cyclic Arg-Gly-Asp containing peptide J Biol Chem 1994 269: 12468–12474

    CAS  PubMed  Google Scholar 

  60. Erbacher P et al. Biophysical and transfection properties of maltose, dextran, poly(ethylene glycol), and antibody derivatives of polyethylenimine (submitted)

  61. Arap W, Pasqualini R, Ruoslahti E . Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model Science 1998 276: 377–380

    Article  Google Scholar 

  62. Buschle M et al. Receptor-mediated gene transfer into human T lymphocytes via binding of DNA/CD3 antibody particles to the CD3 T cell receptor complex Hum Gene Ther 1995 6: 753–761

    Article  CAS  Google Scholar 

  63. Wagner EM et al. Transferrin-polycation conjugates as carriers for DNA uptake into cells Proc Natl Acad Sci USA 1990 87: 3410–3414

    Article  CAS  Google Scholar 

  64. Snyder SL, Sobocinski PZ . An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines Anal Biochem 1975 64: 284–288

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erbacher, P., Remy, JS. & Behr, JP. Gene transfer with synthetic virus-like particles via the integrin-mediated endocytosis pathway. Gene Ther 6, 138–145 (1999). https://doi.org/10.1038/sj.gt.3300783

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300783

Keywords

This article is cited by

Search

Quick links