Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Inhibition of HIV-1 replication by combined expression of gag dominant negative mutant and a human ribonuclease in a tightly controlled HIV-1 inducible vector

Abstract

An HIV-1-based expression vector has been constructed that produces protective genes tightly regulated by HIV-1 Tat and Rev proteins. The vector contains either a single protective gene (HIV-1 gag dominant negative mutant (delta-gag)) or a combination of two different protective genes (delta-gag and eosinophil-derived neurotoxin (EDN), a human ribonuclease) which are expressed from a dicistronic mRNA. After stable transfection of CEM T cells and following challenge with HIV-1, viral production was completely inhibited in cells transduced with the vector producing both delta-gag and EDN and delayed in cells producing delta-gag alone. In addition, cotransfection of HeLa-Tat cells with an infectious HIV-1 molecular clone and either protective vector demonstrated that the HIV-1 packaging signals present in the constructs were functional and allowed the efficient assembly of the protective RNAs into HIV-1 virions, thus potentially transmitting protection to the HIV-1 target cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cara, A., Rybak, S., Newton, D. et al. Inhibition of HIV-1 replication by combined expression of gag dominant negative mutant and a human ribonuclease in a tightly controlled HIV-1 inducible vector. Gene Ther 5, 65–75 (1998). https://doi.org/10.1038/sj.gt.3300545

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300545

Keywords

Search

Quick links