Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Similarity between cell-cycle genes of budding yeast and fission yeast and the Notch gene of Drosophila

Abstract

The HO gene of Saccharomyces cerevisiae encodes the endonu-clease1 that initiates mating-type switching2. To prevent inopportune switching, HO transcription is restricted to a specific period in the haploid3–5 cell cycle, which is just after, and dependent on, the start of the mitotic cell cycle6. A repeated promoter element (CACGA4) (refs 7–9) and two trans-acting activators (SWI4 and SWI6)9 have been identified, which are responsible for the periodic and start-dependent transcription of HO. To understand further the link between start and HO transcription, the SWI6 gene has been cloned and sequenced. The SWI6 protein is similar to the protein in Schizosaccharomyces pombe that is encoded by cdc10 an essential gene specifically required at the start of the cell cycle12,13. The similarity between the SWI6 and cdc10 products, and their common involvement with 'start', suggest that they may share a common mechanism for sensing or executing this critical control step in the cell cycle. The SWI6 and cdc10 proteins also contain two copies of a repeated motif that occurs at least five times in the cytoplasmic domain of the Notch protein of Drosophila melanogaster.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kostricken, R. & Heffron, F. Cold Spring Harb. Symp. quant. Biol. 48, 89–96 (1984).

    Article  Google Scholar 

  2. Jensen, R. E. & Herskowitz, I. Cold Spring Harb. Symp. quant. Biol. 48, 97–104 (1983).

    Google Scholar 

  3. Jensen, R. E., Sprague, G. F. & Herskowitz, I. Proc. natn. Acad. Sci. U.S.A. 80, 3035–3039 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Siliciano, P. G. & Tatchell, K. Cell 37, 967–978 (1984).

    Article  Google Scholar 

  5. Miller, A. M., MacKay, V. L. & Nasmyth, K. A. Nature 314, 598–603 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Nasmyth, K. A. Nature 302, 670–676 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Nasmyth, K. Cell 42, 225–235 (1985).

    Article  CAS  Google Scholar 

  8. Breeden, L. & Nasmyth, K. Cold Spring Harb. Symp. quant. Biol. 50, 643–650 (1985).

    Article  CAS  Google Scholar 

  9. Breeden, L. & Nasmyth, K. Cell 48, 389–397 (1987).

    Article  CAS  Google Scholar 

  10. Bennetzen, J. L. & Hall, B. D. J. biol. Chem. 257, 3026–3031 (1982).

    CAS  PubMed  Google Scholar 

  11. Lipman, D. J. & Pearson, W. R. Science 227, 1435–1441 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Aves, S. J., Durckacz, B. W., Carr, A. & Nurse, P. EMBO J. 4, 457–463 (1985).

    Article  CAS  Google Scholar 

  13. Nurse, P. & Bissett, Y. Nature 292, 558–560 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Beach, D., Durkacz, B. & Nurse, P. Nature 300, 706–709 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Booher, R. & Beach, D. Molec. cell. Biol. 6, 3523–3530 (1986).

    Article  CAS  Google Scholar 

  16. Lee, M. G. & Nurse, P. Nature 327, 31–35 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Draetta, G., Brizuela, L., Potashkin, J. & Beach, D. Cell 50, 319–325 (1987).

    Article  CAS  Google Scholar 

  18. Staden, R. Nucleic Acids Res. 10, 2951–2961 (1982).

    Article  CAS  Google Scholar 

  19. Orcutt, B. C., Dayhoff, M. O., George, D. A. & Barker, W. C. User's Guide for the Alignment Score Program (National Biomedical Research Foundation, Washington DC, 1984).

    Google Scholar 

  20. Doolittle, R. F. Science 214, 149–159 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Tatchell, K., Chaleff, D. T., DeFeo-Jones, D. & Scolnick, E. M. Nature 309, 523–527 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Craig, E. A. & Jacobsen, K. Cell 38, 841–849 (1984).

    Article  CAS  Google Scholar 

  23. Toda, T., Cameron, S., Sass, P., Zoller, M. & Wigler, M. Cell 50, 277–287 (1987).

    Article  CAS  Google Scholar 

  24. Wharton, K. A., Johansen, K. M., Xu, T. & Artavanis-Tsakonas, S. Cell 43, 567–581 (1985).

    Article  CAS  Google Scholar 

  25. Kidd, S., Kelley, M. R. & Young, M. W. Molec. cell. Biol. 6, 3094–3108 (1986).

    Article  CAS  Google Scholar 

  26. Bashford, D., Chothia, C., Lesk, A. J. molec. Biol. 196, 199–216 (1987).

    Article  CAS  Google Scholar 

  27. Poulson, D. F. Proc. natn. Acad. Sci. U.S.A. 23, 133 (1937).

    Article  ADS  CAS  Google Scholar 

  28. Greenwald, I. S., Sternberg, P. W. & Horvitz, H. R. Cell 34, 435–444 (1983).

    Article  CAS  Google Scholar 

  29. Greenwald, I. S. Cell 43, 583–590 (1985).

    Article  CAS  Google Scholar 

  30. Greenwald, I. S. Bioessays 6, 70–73 (1987).

    Article  CAS  Google Scholar 

  31. Barker, W. C., Ketcham, L. K. & Dayhoff, M. O. Atlas of Protein Sequence and Structure, vol. 5, Suppl. 3, 359–362 (National Biomedical Research Foundation, Washington DC, 1978).

    Google Scholar 

  32. MacKay, V. L. Meth. Enzym. 101, 325–343 (1983).

    Article  CAS  Google Scholar 

  33. Rothstein, R. Meth. Enzym. 101, 202–211 (1983).

    Article  CAS  Google Scholar 

  34. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  35. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  36. Henikoff, S. Gene 28, 351–359 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breeden, L., Nasmyth, K. Similarity between cell-cycle genes of budding yeast and fission yeast and the Notch gene of Drosophila. Nature 329, 651–654 (1987). https://doi.org/10.1038/329651a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329651a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing