Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inhibition of the firing of vasopressin neurons by atriopeptin

Abstract

Atriopeptin, the atrial natriuretic peptide, is a circulating hormone that is released from the atria of mammalian hearts in response to volume expansion and acts upon the kidneys, adrenal glands and vasculature to regulate fluid and electrolyte homeostasis1. Atriopeptin is also present in the brain of the rat2–5. Atriopeptin immunoreactive cell bodies and fibres are found in many areas known to be involved in the central regulation of the cardiovascular system, suggesting that it may be a neuromediator in the central control of fluid and electrolyte balance6–8. The paraventricular nucleus of the hypothalamus, which contains the cell bodies of neurons that secrete vasopressin from the posterior pituitary gland, receives a dense innervation from atriopeptin-like immunoreactive fibres6,8–11. We have studied the effect of atriopeptin on the electrical activity of single neurons in the paraventricular nucleus of anaesthetized rats and found that atriopeptin is a potent inhibitor of putative vasopressin neurons. Atriopeptin, which has systemic actions that oppose those of vasopressin, may act as a neuromodulator in the brain to prevent vasopressin secretion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Needleman, P. et al. Hypertension 7, 469–482 (1985).

    Article  CAS  Google Scholar 

  2. Tanka, I., Misono, K. S. & Inagami, T. Biochem biophys. Res. Commun. 124, 663–668 (1984).

    Article  Google Scholar 

  3. Glembotski, C. C., Wildey, G. M. & Gibson, T. R. Biochem. biophys. Res. Commun. 129, 671–678 (1985).

    Article  CAS  Google Scholar 

  4. Shiono, S. et al. Biochem. biophys. Res. Commun. 135, 728–734 (1986).

    Article  CAS  Google Scholar 

  5. Gardner, D. G., Vlasuk, G., Baxter, J. D., Fiddes, J. C. & Lewicki, J. A. Proc. natn. Acad. Sci. U.S.A. 84, 2175–2179 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Saper, C. B. et al. Science 227, 1047–1049 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Standaert, D. G., Saper, C. B. & Needleman, P. Trends Neurosci. 8, 509–511 (1985).

    Article  CAS  Google Scholar 

  8. Standaert, D. G., Needleman, P. & Saper, C. B. J. comp. Neurol. 253, 315–341 (1986).

    Article  CAS  Google Scholar 

  9. Kawata, M. Neuroscience 16, 521–546 (1985).

    Article  CAS  Google Scholar 

  10. Skofitsch, G., Jacobowitz, D. M., Eskay, R. L. & Zamir, N. Neuroscience 16, 917–948 (1985).

    Article  CAS  Google Scholar 

  11. Standaert, D. G. & Saper, C. B. J. Neurosci. (in the press).

  12. Saper, C. B., Loewy, A. D., Swanson, L. W. & Cowan, W. M. Brain Res. 117, 305–312 (1976).

    Article  CAS  Google Scholar 

  13. Swanson, L. W. & Sawchenko, P. E. A. Rev. Neurosci. 6, 269–324 (1983).

    Article  CAS  Google Scholar 

  14. Swanson, L. W. & Kuypers, H. G. J. M. J. comp. Neurol. 194, 555–570 (1980).

    Article  CAS  Google Scholar 

  15. Brody, M. J. & Johnson, A. K. in Disturbances in Neurogenic Control of Circulation (eds F. M. Abboud, H. A. Fozzard, J. P. Gilmore & D. J. Reis) 105–117 (Am. physiol. Soc., Bethesda, 1981).

    Google Scholar 

  16. Haskins, T. J., Zingaro, G. J. & Lappe, R. W. Neurosci. Lett. 67, 279–284 (1986).

    Article  CAS  Google Scholar 

  17. Wong, M., Samson, W. K., Dudley, C. A. & Moss, R. L. Neuroendocrinology 44, 49–53 (1986).

    Article  CAS  Google Scholar 

  18. Poulain, D. A. & Wakerly, J. B. Neuroscience 7, 773–808 (1982).

    Article  CAS  Google Scholar 

  19. Renaud, L. P., Bourque, C. W., Day, T. A. Ferguson, A. V. & Randle, J. C. R. in Electrophysiology of the Secretory Cell (eds A. M. Poisner & J. M. Trifaro) 165–194 (Elsevier, Amsterdam, 1985).

    Google Scholar 

  20. Dutton, A. & Dyball, R. E. J. J. Physiol., Lond. 290, 433–440 (1979).

    Article  CAS  Google Scholar 

  21. Cobbett, P., Smithson, K. G. & Hatton, G. I. Brain Res. 362, 7–16 (1986).

    Article  CAS  Google Scholar 

  22. Iitake, K. et al. Endocrinology 119, 438–449 (1986).

    Article  CAS  Google Scholar 

  23. Samson, W. K. Neuroendocrinology 40, 277–279 (1985).

    Article  CAS  Google Scholar 

  24. Samson, W. K., Aguila, M. C., Martinovic, J., Antunes-Rodriques, J. & Norris, M. Peptides 8, 449–544 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Standaert, D., Cechetto, D., Needleman, P. et al. Inhibition of the firing of vasopressin neurons by atriopeptin. Nature 329, 151–153 (1987). https://doi.org/10.1038/329151a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329151a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing