Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Southern oscillation simulated in a global climate model

Abstract

The Southern Oscillation is the dominant pattern of interannual climatic variation over the Earth. Climatic variance associated with this phenomenon is exceeded only by the annual cycle and the ice ages. Although there is general agreement among climatologists that the Southern Oscillation originates in the interaction between the atmosphere and the tropical ocean, the detailed mechanism(s) have remained elusive. In this report we present evidence that the essential aspects of the Southern Oscillation are simulated in a general circulation model (GCM) of the coupled atmosphere and upper ocean. This indicates that: (1) the physical basis of this global oscillation is present in the equations of motion underlying this model; (2) multi-year simulations of climate by GCMs, which have hitherto primarily been used to study equilibrium properties of climate, may also be useful in investigating time-dependent changes on the interannual timescale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lamb, H. H. Climate Present, Past and Future Vol. 1 241–250 (Methuen, London, 1972).

    Google Scholar 

  2. Wyrtki, K. Science 180, 66–68 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Wyrtki, K. J. Phys. Oceanogr. 4, 91–103 (1974).

    Article  ADS  Google Scholar 

  4. Wyrtki, K. J. Phys. Oceanogr. 4, 372–380 (1974).

    Article  ADS  Google Scholar 

  5. Wyrtki, K. J. Phys. Oceanogr. 5, 450–459 (1975).

    Article  ADS  Google Scholar 

  6. Wyrtki, K. J. Phys. Oceanogr. 5, 572–582 (1975).

    Article  ADS  Google Scholar 

  7. Busalacchi, A. J. & O'Brien, J. J. J. Phys. Oceanogr. 10, 1929–1951 (1980).

    Article  ADS  Google Scholar 

  8. Gill, A. E. & Rasmusson, E. M. Nature 306, 231–234 (1983).

    Article  Google Scholar 

  9. Schopf, P. J. & Harrison, D. E. J. Phys. Oceanogr. 13, 936–948 (1983).

    Article  ADS  Google Scholar 

  10. Inoue, M. & O'Brien, J. J. Mon. Weath. Rev. 112, 2326–2337 (1984).

    Article  ADS  Google Scholar 

  11. Cane, M. A. & Zebiak, S. E. Science 228, 1085–1087 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Cane, M. A. Zebiak, S. E. & Dolan, S. C. Nature 321, 827–832 (1986).

    Article  ADS  Google Scholar 

  13. Lau, N.-C. Mon. Weath. Rev. 109, 2287–2311 (1981).

    Article  ADS  Google Scholar 

  14. Shukla, J. & Wallace, J. M. J. Atmos. Sci. 40, 1613–1630 (1983).

    Article  ADS  Google Scholar 

  15. Boer, G. J. in Coupled Ocean-Atmosphere Models (ed. Nihoul, J.) 7–18 (Elsevier, Amsterdam, 1985).

    Book  Google Scholar 

  16. Lau, N.-C. Mon. Weath. Rev. 113, 1970–1996 (1985).

    Article  ADS  Google Scholar 

  17. Kang, I.-S. & Lau, N.-C. J. Atmos. Sci. 43, 2719–2735 (1986).

    Article  ADS  Google Scholar 

  18. Walker, G. T. & Bliss, E. W. Mem. R. met. Soc. 4, 53–84 (1932).

    Google Scholar 

  19. Hastenrath, S. Climate and Circulation in the Tropics 253–273 (Reidel, Boston, 1985).

    Book  Google Scholar 

  20. Wright, P. B. Am. Met. Soc. Bull. 66, 398–412 (1985).

    Article  Google Scholar 

  21. Pollard, D. Rep. no. 31, 35 (Climatic Research Institute, Oregon State University, Corvallis, 1982).

  22. Trenberth, K. in Climate and Circulation in the Tropics (ed. Hasenrath, S.) 257 (Reidel, Boston, 1985).

    Google Scholar 

  23. Berlage, H. P. Ann. N.Y. Acad. Sci. 95, 354–367 (1961); also Climate Present, Past and Future Vol. 1 (ed. Lamb, H. H.) 245 (Methuen, London, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sperber, K., Hameed, S., Gates, W. et al. Southern oscillation simulated in a global climate model. Nature 329, 140–142 (1987). https://doi.org/10.1038/329140a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329140a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing