Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Speckle patterns permit direct observation of phase breaking

Abstract

Aoderson1 and Mott2 showed that scattering from a strongly disordered system qualitatively changes the way in which electron waves propagate. It has recently been realized that these changes occur universally for all waves, in particular optical waves3–5. It is also becoming apparent that many important new phenomena previously inferred indirectly for electrons can now be observed directly for photons. Here, we show how the time evolution of the scattered wave due to inelastic phase breaking (dephasing) processes can be followed directly. When coherent light is scattered by a disordered system an image of the emergent wave is obtained in the form of an apparently random intensity alternation known as speckle. From the time evolution of this speckle pattern we have found that multiple scattering greatly reduces the time required for phase breaking. This unexpected result is explained in terms of the extreme fragility of the phases of long trajectories, and appears to have important implications for a wide variety of phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anderson, P. W. Phys. Rev. 109, 1492–1505 (1958).

    Article  ADS  CAS  Google Scholar 

  2. Mott, N. F. Metal Insulator Transitions (Taylor & Francis, London, 1974).

    Google Scholar 

  3. Anderson, P. W. Phil. Mag. B52, 505–509 (1985).

    Article  CAS  Google Scholar 

  4. John, S. Phys. Rev. Lett. 53, 2169–2172 (1984).

    Article  ADS  Google Scholar 

  5. Golubentsev, A. A. JETP 59, 26–32 (1984).

    Google Scholar 

  6. Abrahams, E., Anderson, P. W., Licciardelo, D. C. & Ramakrishnan, T. V. Phys. Rev. Lett. 42, 673–676 (1979).

    Article  ADS  Google Scholar 

  7. Gorkov, L. P., Larkin, A. F. & Khmel'nitsky, O. E. JETP Lett. 30, 228–232 (1979).

    ADS  Google Scholar 

  8. Bergmann, G. Phys. Rep. 107, 1–58 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Lee, P. A. & Ramakrishnan, T. V. Rev. mod. Phys. 57, 287–337 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Mott, N. F. & Kaveh, M. Adv. Phys. 34, 329–401 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Thouless, D. J. Phys. Rev. Lett. 39, 1167–1169 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Altshuler, B. L., Aronov, A. G. & Khmelnitsky, D. E. Solid St. Commun. 39, 619–623 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Mott, N. F. & Kaveh, M. Phil. Mag. B52, 177–183 (1985).

    Article  Google Scholar 

  14. Schumacher, R. T. Am. J. Phys. 54, 137–141 (1986).

    Article  ADS  Google Scholar 

  15. Etemad, S., Thompson, R. & Andrejco, M. J. Phys. Rev. Lett. 57, 575–578 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Kaveh, M., Rosenbluh, M., Edrei, I. & Freund, I. Phys. Rev. Lett. 57, 2049–2052 (1985).

    Article  ADS  Google Scholar 

  17. Shapiro, B. Phys. Rev. Lett. 57, 2168–2171 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Kuga, Y. & Ishimaru, A. J. opt. Soc. Am. A1, 831–835 (1984).

    Article  ADS  Google Scholar 

  19. Tsang, L. & Ishimaru, A. J. opt. Soc. Am. A2, 2187–2193 (1985).

    Article  ADS  Google Scholar 

  20. Van Alba, M. P. & Lagendijk, A. Phys. Rev. Lett. 55, 2692–2695 (1985).

    Article  ADS  Google Scholar 

  21. Wolf, P. E. & Maret, G. Phys. Rev. Lett. 55, 2696–2699 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Lee, P. A. & Stone, A. D. Phys. Rev. Lett. 55, 1622–1625 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Pepper, M. Contemp. Phys. 26, 257–293 (1985).

    Article  ADS  CAS  Google Scholar 

  24. Kaveh, M. Phil. Mag. B52, 521–540 (1985).

    Article  CAS  Google Scholar 

  25. Imry, Y. in Directions in Condensed Matter Physics (eds Grinstein, G. & Mazenko, E.) 275–293 (World Scientific, Singapore, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaveh, M., Rosenbluh, M. & Freund, I. Speckle patterns permit direct observation of phase breaking. Nature 326, 778–780 (1987). https://doi.org/10.1038/326778a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326778a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing