Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium

A Corrigendum to this article was published on 20 August 1987

Abstract

Lignin is a complex polymer of phenylpropanoid subunits. It is an essential component of woody tissue, to which it imparts structural rigidity. Lignin is remarkably resistant to degradation by most microbes; nevertheless, a few species of white-rot fungi are able to catalyse its oxidation to CO2. Its biodegradation is of great ecological significance because, next to cellulose, lignin is the most abundant renewable polymer on Earth. The first step in lignin degradation is depolymerization, catalysed by the lignin peroxidase isozymes (ligninases)1–4. These isozymes are secreted, along with hydrogen peroxide (H2O2) by the fungus Phanerochaete chrysosporium Burds. under conditions of nutrient (nitrogen) limitation1,2. Ligninases are not only important in lignin biodegradation, but are also potentially valuable in chemical waste disposal because of their ability to degrade environmental pollutants5. We have undertaken the cloning of the ligninase genes to understand further their regulation and enzymology. We report here the isolation and characterization of a ligninase complementary DNA clone with a full-length insert. The cDNA sequence shows that the sequence of the mature ligninase is preceded by a 28-residue leader, and the mature protein is predicted to have a relative molecular mass of 37,000 (Mr 37K). Consistent with the classification of ligninase as a peroxidase certain residues thought to be essential for peroxidase activity can be identified and near these residues the ligninase shows homology with other known peroxidases. Our cDNA clone has also allowed us to show that expression of ligninase is regulated at the messenger RNA level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tien, M. & Kirk, T. K. Science 221, 661–663 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Glenn, J. K., Morgan, M. A., Mayfleld, M. B., Kuwahara, M. & Gold, M. H. Biochem. biophys. Res. Commun. 114, 1077–1083 (1983).

    Article  CAS  Google Scholar 

  3. Tien, M. & Kirk, T. K. Proc. natn. Acad. Sci. U.S.A. 81, 2280–2284 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Gold, M. H., Kuwahara, M., Chiu, A. A. & Glenn, J. K. Archs Biochem. Biophys. 234, 353–362 (1984).

    Article  CAS  Google Scholar 

  5. Bumpus, J. A., Tien, M., Wright, D. & Aust, S. D. Science 228, 1434–1436 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Kirk, T. K., Croan, S. C., Tien, M., Murtagh, K. & Farrel, R. Enzyme Microb. Technol. 8, 27–32 (1985).

    Article  Google Scholar 

  7. Gubler, U. & Hoflman, B. J. Gene 25, 263–269 (1983).

    Article  CAS  Google Scholar 

  8. Tien, M. & Kirk, T. K. Meth. Enzym. (in the press).

  9. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning, a Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  10. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Messing, J. Meth. Enzym. 101, 20–77 (1983).

    Article  CAS  Google Scholar 

  12. Kozak, M. Nucleic Acids Res. 9, 5233–5252 (1981).

    Article  CAS  Google Scholar 

  13. Kaput, J., Goltz, S. & Blobel, G. J. biol Chem. 257, 15054–15058 (1982).

    Article  CAS  Google Scholar 

  14. Julius, D., Schekman, R. & Thorner, J. Cell 36, 309–318 (1984).

    Article  CAS  Google Scholar 

  15. Bell, G. I., Santerre, R. F. & Mullenbach, G. T. Nature 302, 716–718 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Neuberger, A., Gottshalk, A., Marshal, R. D. & Spiro, R. D. in The Glycoproteins: Their Composition, Structure and Function Part A (ed. Gottschalk, A.) 450–490 (Elsevier, Amsterdam, 1972).

    Google Scholar 

  17. Proudfoot, N. J. & Brownbee, G. G. Nature 263, 211–214 (1976).

    Article  ADS  CAS  Google Scholar 

  18. Pelham, H. R. B. & Jackson, R. J. Eur. J. Biochem. 67, 247–256 (1976).

    Article  CAS  Google Scholar 

  19. Tien, M., Kirk, T. K., Bull, C. & Fee, J. A. J. biol. Chem. 261, 1687–1693 (1986).

    Article  CAS  Google Scholar 

  20. Kuila, D., Tien, M., Fee, J. A. & Ondrias, M. R. Biochemistry 24, 3394–3397 (1986).

    Article  Google Scholar 

  21. Poulos, T. L. et al. J. biot. Chem. 255, 575–580 (1986).

    Article  Google Scholar 

  22. Dunford, H. B. & Stillman, J. S. Coord. Chem. Rev. 19, 187–251 (1976).

    Article  CAS  Google Scholar 

  23. Poulos, T. L. & Kraut, J. J. biol. Chem. 255, 8199–8205 (1980).

    Article  CAS  Google Scholar 

  24. Chance, B. Arch. Biochem. Biophys. 41, 416–424 (1952).

    Article  CAS  Google Scholar 

  25. Manthey, J. A. & Hager, L. P. J. biol. Chem. 260, 9654–9659 (1985).

    Article  CAS  Google Scholar 

  26. Zhang, Y. Z., Zylstra, G. J., Olsen, R. H. & Reddy, C. A. Biochem. biophys. Res. Commun. 137, 649–656 (1986).

    Article  CAS  Google Scholar 

  27. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  28. Bantle, J. A., Maxwell, I. H. & Hahn, W. E. Analyt. Biochem. 72, 413–427 (1976).

    Article  CAS  Google Scholar 

  29. Tu, C.-P. D., Weiss, M. J., Karakawa, W. W. & Reddy, C. C. Nucleic Acids Res. 10, 5407–5419 (1982).

    Article  CAS  Google Scholar 

  30. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  31. Towbin, H., Staehelin, T. & Gordon, J. Proc natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).

    Article  ADS  CAS  Google Scholar 

  32. Welinder, K. G. & Mazza, G. Bur. J. Biochem. 73, 353–358 (1977).

    CAS  Google Scholar 

  33. Welinder, K. G. FEBS Lett. 72, 19–23 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tien, M., Tu, CP. Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature 326, 520–523 (1987). https://doi.org/10.1038/326520a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326520a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing