Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Somatic hypermutation of an immunoglobulin transgene in K transgenic mice

Abstract

Initial studies of somatically acquired mutations in immunoglobulin V regions from hybridomas and myelomas that are not derived from joining aberrations, suggested a controlled and specific hypermutation process1–9, because spontaneous mutation rates observed for other genes are extremely low10. Some evidence for the idea that mutations are introduced during V-gene rearrangement came from the clustering of mutations at the joining sites6,8, from the absence of mutations in unrearranged V genes4,5,11 and from the low level of mutations in only partially (D-J) rearranged nonproductive heavy-chain alleles12. Another model in which mutations accumulate with each cell division, rather than being introduced all at once8, was supported by the finding that immunoglobulin genes of hybridomas derived from a single mouse frequently had several mutations in common, and so might be derived from the same precursor cell whose daughters then accumulated additional mutations13–17. But the common mutations in some cases could be due to as yet unidentified related germline genes, or could represent the effect of antigen selection for certain amino acids. To try to detect hypermutation in the absence of V-gene rearrangement, we isolated B lymphocytes with endogenous heavy-chain gene mutations from transgenic mice carrying pre-rearranged K-transgenes. We found that these K-transgenes were also somatically mutated. This and other observations indicated that: (1) ongoing rearrangement is not required for mutation; (2) there are signals for hypermutation in the trans-genes; (3) the mutations are found only in the variable region, so the constant region may not be a target; (4) different transgene insertion sites are compatible with hypermutations and (5) more than one transgene is expressed in the same cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weigert, M. & Riblet, R. Cold Spring Harb. Symp. quant. Biol. 41, 837–846 (1976).

    Article  Google Scholar 

  2. Bernard, O., Hozumi, N. & Tonegawa, S. Cell 15, 1133–1144 (1978).

    Article  CAS  PubMed  Google Scholar 

  3. Nishioka, Y. & Leder, P. J. biol. Chem. 255, 3691–3694 (1980).

    CAS  PubMed  Google Scholar 

  4. Seising, E. & Storb, U. Cell 25, 47–58 (1981).

    Article  Google Scholar 

  5. Crews, S., Griffin, J., Huang, H., Calame, K. & Hood, L. Cell 25, 59–66 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, S., Davis, M., Sinn, E., Patten, P. & Hood, L. Cell 27, 573–581 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Gearhart, P. J., Johnson, N., Douglas, R. & Hood, L. Nature 291, 29–34 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Gearhart, P. J. & Bogenhagen, D. T. Proc. natn. Acad. Sci. U.S.A. 80, 3439–3443 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Bothwell, A. L. M. et al. Cell 24, 625–637 (1981).

    Article  CAS  PubMed  Google Scholar 

  10. Vogel, F. in Chemical Mutagenesis in Mammals and Man (eds Vogel, F. & Rohrborn, G.) 16–68 (Springer, Heidelberg, 1970).

    Google Scholar 

  11. Gorski, J., Rollini, P. & Mach, B. Science 220, 1179–1181 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Sablitsky, F., Weisbanm, D. & Rajewsky, K. EMBO J. 4, 3435–3437 (1985).

    Article  Google Scholar 

  13. Rudikofi, S., Pawlita, M., Pumphrey, J. & Heller, M. Proc. natn. Acad. Sci. U.S.A. 81, 2162–2166 (1984).

    Article  ADS  Google Scholar 

  14. Griffiths, G. M., Berek, C., Kaartinen, M. & Milstein, C. Nature 312, 271–275 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. McKean, D. et al. Proc. natn. Acad. Sci. U.S.A. 81, 3180–3184 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Sablitsky, F., Wildmer, G. & Rajewsky, K. EMBO J. 4, 345–350 (1985).

    Article  Google Scholar 

  17. Clarke, S. H., Claflin, J. L. & Rudikoff, S. Proc. natn. Acad. Sci. U.S.A. 79, 3280–3284 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Storb, U. et al. J. exp. Med. 164, 627–741 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Gershenfeld, H., Tsukamoto, A., Weissman, I. & Joho, R. Proc. natn. Acad. Sci. U.S.A. 78, 7674–7678 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Perlmutter, R. M., Benson, B., Griffin, J. & Hood, L. J. exp. Med. 162, 1998–2016 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Brodeur, P. H. & Riblet, R. Eur. J. Immun. 14, 922–930 (1984).

    Article  CAS  Google Scholar 

  22. Wysocki, L., Manser, T. & Giffer, M. Proc natn. Acad. Sci. U.S.A. 83, 1847–1851 (1986).

    Article  ADS  CAS  Google Scholar 

  23. O'Brien, R. L. thesis. Univ. Washington, Seattle (1986).

  24. Battula, N. & Loeb, L. A. J. biol. Chem. 250, 4405–4409 (1975).

    CAS  PubMed  Google Scholar 

  25. Gerard, G. F. BRL Focus 8, 12 (1986).

    Google Scholar 

  26. Wabl, M., Burrows, P. D., von Gabain, A. & Steinberg, C. Proc. natn. Acad. Sci. U.S.A 82, 479–482 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Secher, D. S. et al. Immun. Rev. 36, 51–72 (1977).

    Article  CAS  PubMed  Google Scholar 

  28. Morrison, S. L. & Scharff, M. D. CRC Crit. Rev. Immun. 3, 1–22 (1981).

    CAS  Google Scholar 

  29. Kearney, J. F., Radbruch, A., Liesegang, B. & Rajewsky, K. J. Immun. 123, 1548 (1979).

    CAS  PubMed  Google Scholar 

  30. Nowinski, R. C. Virology 93, 111–126 (1979).

    Article  CAS  PubMed  Google Scholar 

  31. Claflin, J. L., Claflin, J., Hudak, S., & Maddalena, A. J. exp. Med. 153, 352–364 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. White, B. A. & Bancroft, F. C. J. biol. Chem. 257, 856–7572 (1981).

    Google Scholar 

  33. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–559 (1977).

    Article  Google Scholar 

  34. Kabat, E. A., Wu, T. T. & Bilofsky, H. NIH Publ. No. 80–2008 (Bethesda, Maryland, 1979).

  35. Sanger, F., Nicklen, S. & Coulsen, A. Proc. natn. Acad. Sci. U.S.A 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  36. Viera, J. & Messing, J. Gene 19, 259–268 (1982).

    Article  Google Scholar 

  37. Tobak, H. F. & Flavell, R. A. Nucleic Acids Res. 5, 2321 (1978).

    Article  Google Scholar 

  38. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  PubMed  Google Scholar 

  39. Gollahon, K. G., Brinster, R. & Storb, U. J. exp. Med. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Brien, R., Brinster, R. & Storb, U. Somatic hypermutation of an immunoglobulin transgene in K transgenic mice. Nature 326, 405–409 (1987). https://doi.org/10.1038/326405a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326405a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing